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Abstract—In the shared space scenario where pedestrian
crowds and autonomous vehicles coexist, the transportation
efficiency of the shared space can be improved by predicting
the intention of the crowd and adjusting the driving strategy of
the autonomous vehicles. This study proposes a framework that
consists of the detection of individual pedestrians in a crowd
via both on-vehicle and infrastructure sensors, the prediction
of the crowd motion given the vehicle driving strategy, and
the evaluation of the transportation efficiency in shared spaces.
Methods for pedestrian detection and scenario prediction are in-
troduced. Several aspects for improving transportation efficiency
in shared spaces are discussed. Preliminary results of pedestrian
detection on individual sensors and a simulation case study for
estimating the desired time for an autonomous vehicle to pass
the a shared space scenario demonstrate the potential of the
proposed framework.

Index Terms—smart city, intelligent transportation, au-
tonomous vehicle, shared space, pedestrian, crowd, scenario
simulation

I. INTRODUCTION

THE intention of crowd pedestrians plays an important role

for autonomous vehicles or intelligent systems in trans-

portation. This intention is especially critical to shared space

scenarios that involve crowd pedestrians and autonomous

vehicles. One of the most common issues that relies on the

crowd intention is how to improve the transportation effi-

ciency in shared spaces when autonomous vehicles traverse the

shared spaces that are partially or mostly occupied by crowd

pedestrians. To do this, it is necessary to evaluate the status

of individual pedestrians as well as their interactions with

other pedestrians and the autonomous vehicles. This evaluation

requires simultaneous handling of pedestrian motion, vehicle

action, and the driving efficiency of the vehicle.

This study proposes a framework that aims to (a) detect indi-

vidual pedestrian’s state in the crowd via multiple sensors, (b)

predict crowd pedestrians’ motion given the driving strategy of

the autonomous vehicles, and (c) evaluate the vehicle driving

efficiency based on the scenario simulation, which eventually

contributes to the transportation efficiency in shared spaces. A

multi-sensor strategy was introduced for accurately detecting

and estimating the individual pedestrian’s state. Initial results

of pedestrian detection on each separate sensor are presented.
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A social force based vehicle-crowd interaction model was

combined with a vehicle model to predict and evaluate the

scenario, and consequently adjust the driving efficiency of the

autonomous vehicles. The approaches to address several types

of driving efficiency problems are discussed. Specifically, a

simulation case study was done for the prediction of the

desired time for an autonomous vehicle to pass through crowds

of different densities.

Pedestrian detection using on-vehicle sensors has been

widely studied for a long time. Among these on-vehicle

sensors, much progress has been achieved with monocular

cameras [1] [2] [3]. LiDAR-based [4] and stereo-based [5] [6]

pedestrian detection approaches usually work in conjunction

with monocular cameras. On-vehicle sensors provide instant

detection results of pedestrians in the neighborhood of the

autonomous vehicle. However, when the crowd density is

high enough, it is generally difficult for on-vehicle sensors

to detect all individual pedestrians due to massive occlusions.

Nowadays, with the commercialization and the decreasing

prices of unmanned aerial vehicles (UAVs), it is possible to use

UAVs with downward facing aerial cameras as infrastructure

sensors hovering above the interested area so that the indi-

vidual pedestrians can be more easily detected. Therefore, we

propose a multi-sensor pedestrian detection strategy that relies

on both UAV-based infrastructure sensors and the on-vehicle

sensors to handle the massive occlusion problems.

Scenario prediction provides necessary information for ad-

justing the driving efficiency of autonomous vehicles travers-

ing the crowd in shared spaces. The prediction requires analyz-

ing the interactive behavior of both the crowd pedestrians and

the autonomous vehicles. Several studies have inspected this

interaction mechanism [7] [8] [9]. Due to the complexity of the

interaction mechanism, scenario simulation [10] is an effective

approach to address the driving efficiency problem. Assuming

the correctness of pedestrian detection in the previous stage

and the validity of the vehicle-crowd interaction mechanism,

analyzing the simulation results gives useful information for

improving the driving efficiency, on which the transportation

efficiency in shared spaces can be improved.

There are two main contributions in the study. First, the

combination of UAV-based infrastructure sensors and the on-

vehicle sensors provides a prospective scheme to deal with

the pedestrian detection task in crowded scenarios. Second,

utilizing the interactive scenario simulation, the transporta-

tion efficiency problems in shared spaces can be effectively

analyzed. The proposed framework will eventually contribute

towards furthering intelligent transportation systems (ITS) and
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Fig. 1. The proposed framework to improve transportation efficiency.

smart city operations.

For the rest of the paper, section 2 presents the proposed

overall framework. Section 3 describes the multi-sensor strat-

egy and the methods for pedestrian detection on individual

sensors with the corresponding initial results. Section 4 de-

tails the process and the applied models to achieve scenario

prediction. Section 5 proposes the approach to evaluate and

improve the transportation efficiency in shared spaces, with a

simulation case study for the estimated time to pass through

the crowd. Lastly, conclusions and future work are discussed.

II. FRAMEWORK

Figure 1 shows the proposed overall framework. First, for

an area of interest, individual pedestrians in the crowd are

detected via both on-vehicle sensors and infrastructure sensors.

Second, for the subject vehicle, the detection results are fused

with the results from nearby vehicles (if they exist) and the

results of the infrastructure sensors. The current pedestrian

states, i.e., the positions and orientations of individual pedes-

trians at the current time step, are determined by combining

the fused detection results with the high precision map. Next,

the autonomous vehicle plans an initial driving strategy based

on current pedestrian states. Both the driving strategy and the

pedestrian states are sent to the scenario prediction module.

The output of the scenario prediction is fed back to the

autonomous vehicle so that the driving strategy can be updated

based based on a specific driving efficiency objective, which is

generated according to the transportation efficiency objective

in shared spaces. Finally, the actual motion of the autonomous

vehicle physically affects the area of interest.

Transportation efficiency objectives in shared spaces should

be pre-specified as an input or a criteria for the framework. The

transportation efficiency objective is then translated into the

vehicle driving efficiency objective, because the autonomous

vehicle is the primary and the most influential participant in

the scenario.

Fig. 2. Experimental vehicle (right) and the configuration of on-vehicle
sensors (left).

III. PEDESTRIAN DETECTION IN CROWD

A. On-vehicle Sensors

An E-Z-GO® golf cart is used as our experimental vehi-

cle. The vehicle contains a front facing stereo camera, two

front/side facing monocular cameras, and three LiDAR (Light

Detection And Ranging) sensors as shown in figure 2.

1) Monocular camera: Monocular camera vision comes

from two FLEA®3 GigE Vision cameras. It also comes from

either one of the channels of the stereo camera. Our study uses

the approach in [11], which relies on extracting a Histogram of

Oriented Gradient (HOG) features from the image, followed

by a linear classifier using Support Vector Machines (SVMs).

The overall detection process is illustrated in figure 3. Those

methods usually work, specifically for pedestrians, as HOG

features are robust against illumination and small local pose

differences due to the fact that pixel gradients are normalized

locally within blocks in the image. Adding texture information

using Local Binary Pattern (LBP) descriptors to HOG features

is a well-known method of detecting shapes and textures in

the image feature space and could be applied to our system

for better detection accuracy [12].

2) Stereo camera: A ZED™ 2K stereo camera is used

primarily for detecting pedestrians in front of the autonomous

vehicle. As shown in figure 4, the detection task is divided

into two parallel processes: UV-disparity map based object de-

tection, and the semantic segmentation of a monocular vision

based on a convolution neural network (CNN). The U-disparity

map can be used to detect the ground plane and find the upper

and lower edges of the object while the V-disparity map can

be used to find the left and right edges. Once the objects are

identified, they are compared with the semantic segmentation

result, which is achieved by ICNet [13]. Pedestrians can be

identified by combining the semantic segmentation result and

the objects found using the UV-disparity map.

3) LiDAR: Three Velodyne® VLP-16 LiDAR sensors are
used in conjunction to form a single 3D point cloud. Each

LiDAR unit has 16 vertical layers covering a ±15° vertical
field of view and a 360° horizontal field of view with a 100
meter range. The point cloud data is received from each Li-

DAR at 10 Hz and then translational and rotational offsets are

applied before combining the point clouds to properly account

for their different mounting locations. The translational offset

is measured manually and the rotational offset is measured by

the extrinsic rotational calibration method presented in [14].
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Fig. 3. The pedestrian detection process of a monocular camera. Step 1: calculate pixel gradients, i.e., magnitude and direction in 8x8 cells. Step 2: each
pixel votes for its cell gradient orientation depending on its gradient magnitude. Step 3: concatenate cell histograms into blocks of 2x2 that describe the final
HOG feature vector of the whole image. Step 4: classify resulting HOG feature vector into pedestrians and other.

Fig. 4. Stereo vision based pedestrian detection. The top row shows the process of semantic segmentation while the bottom row shows the process of
UV-disparity map based object detection.

The pedestrian detection method is similar to that used in [4]

in regards to the LiDAR data being used in conjunction with

monocular camera data. The overall process is illustrated in

figure 5. The ground plane is first removed from the combined

point cloud using the ground plane extraction algorithm from

[15]. After the ground plane removal, object segmentation is

performed as also done in [15]. The objects found in the point

cloud after segmentation guide the camera-based pedestrian

detection by providing regions of interest and narrowing the

search space.

B. Infrastructure Sensors

Infrastructure sensors could be any combination of dedi-

cated cameras mounted on nearby buildings, regular surveil-

lance cameras, and downward facing aerial cameras mounted

on UAVs. This section only focuses on UAV-based infrastruc-

ture sensors, as the detection methods apply similarly to others.

In this study, a DJI® Phantom 3 SE with a built-in camera,

Fig. 5. The flowchart of LiDAR based pedestrian detection.

as shown in figure 6, is used as the UAV-based infrastructure

sensor.

Since the UAV is part of the infrastructure, it is safe

to assume that the background of the area of interest is

known. Individual pedestrian detection is done based on each

new frame calibrated and subtracted with respect to the

background. For each background-removed frame, a series

of image processing operations (thresholding, opening, and

closing) are applied and the contours and bounding boxes of

all objects are then generated. Using the contours, positions

of individual pedestrians can be easily determined. The above

detection process is illustrated in figure 7.

C. Sensor fusion

Once we have performed the pedestrian detection for both

on-vehicle sensors and UAV-based infrastructure sensors, the

next step is to fuse the detection results. The purpose of

sensor fusion is to exploit the complementary and redundant

characteristics of the sensors for increasing the reliability and

accuracy of the pedestrian detection. The Dempster-Shafer

theory (DST) is applied for the sensor fusion task, which

combines the sources of evidence while avoiding counter-

intuitive results [16]. Figure 8 shows how multiple sources

Fig. 6. The DJI® Phantom 3 SE unmanned aerial vehicle (UAV).
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Fig. 7. Pedestrian detection of UAV-based infrastructure camera. In the scenario, 3 pedestrians are walking in shared space while the vehicle tries to traverse.

Fig. 8. The flowchart of the Dempster-Shafer theory (DST).

of evidence are processed by DST. First, the basic belief

assignment (BBA) is done based on multiple sources. Then the

most credible pedestrian positions are generated by applying

Dempster’s rule of combination.

IV. THE SCENARIO PREDICTION

The scenario in a short time horizon, for example 10 to 30

seconds, is predicted in simulation given the current states of

the individual pedestrians, models that describe the motion of

both the pedestrians and the vehicle, and the driving efficiency

objective of the autonomous vehicle.

A. Pedestrian Goals

Once the states of all individual pedestrians are available,

the next step is to estimate the current pedestrian goals. It is

common to assume that a pedestrian walks linearly at a con-

stant speed for a short horizon. Under this linear assumption,

a near-term goal of the pedestrian can be inferred. If a more

precise estimation is desired, a nonlinear assumption could

be applied. For example, a nonlinear Bayesian estimation

filter with the hospitality map and the synthetic inclination

map could be a solution [17] if provided with the terrain

information.

B. Pedestrian Motion

The social force based vehicle-crowd interaction model [9]

is applied to describe the motion of pedestrians under the

influence of vehicles in shared spaces. Generally, the motion of

a pedestrian in the crowd is governed by Newtonian dynamics

and subject to the interactive forces from surrounding pedes-

trians and vehicles. The total force applied in the Newtonian

dynamics can be expressed as

Fi =
∑

j∈Q(i)

(f ij
r + f ij

c + f ij
n ) + f i

g + f i
v + f i

b + εi. (1)

where
∑

j∈Q(i)(f
ij
r + f ij

c + f ij
n ) stands for the repulsive,

collision, and navigational forces from nearby pedestrians, and

f i
g , f

i
v , f

i
b , and εi are the goal driven force, the interactive

forces from vehicles, the repulsive forces of all boundaries,

and a random noise, respectively. All forces are modeled

mathematically to represent reasonable individual effect on the

subject pedestrian.

C. Vehicle Motion

A kinematic bicycle model [18] is utilized to describe the

vehicle motion due to the effectiveness of representing the

slowly moving vehicle and the availability of adjusting vehicle

driving strategy by changing its steering and gas/brake control

action. This model assumes planner motion, the same left and

right wheel steering angle, and no slip on all tires, which

is compatible with the low speed shared space scenario. The

model is expressed as

ẋ = v · cos(θ + β) (2)

ẏ = v · sin(θ + β) (3)

v̇ = f(u) (4)

θ̇ =
v

lr
· sinβ (5)

β = arctan

(
lr

lf + lr
tan δf

)
(6)

where v is the longitudinal speed, β is the velocity angle with
respect to the vehicle center of gravity (C.G.), lf , lr are the
distances from C.G. to the front wheel and the rear wheel

respectively, u is the longitudinal control action (brake/gas),
and δf is the lateral control action (steering angle of the front
wheel).

V. TRANSPORTATION EFFICIENCY IN SHARED SPACES

As the pedestrian motion can only be predicted but hardly

controlled by intelligent systems, the driving efficiency of

the autonomous vehicle plays the main role in affecting

the transportation efficiency in shared spaces. Depending on

the driving efficiency objective, the driving strategy can be

determined by either online or offline approaches.

A. Approaches

Figure 9 shows the process of online driving strategy plan-

ning. Once the driving efficiency objective has been chosen

and the current pedestrian states are available, modules of
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Fig. 9. Online driving strategy planning process.

Fig. 10. Offline driving strategy determination process.

scenario prediction, objective evaluation, and driving strategy

planning are executed sequentially and iteratively until a

driving strategy that satisfies the driving efficiency objective is

generated. This can be achieved by forming a model predictive

control (MPC) problem and solving the objective function.

Specific vehicle driving objectives could be, for example,

finding the shortest passing time through the crowd while

guaranteeing the pedestrian safety.

The driving strategy can also be determined offline as shown

in figure 10. This approach requires training of a model that

represents the relationship between the inputs (the driving

efficiency objective and the current pedestrian states), and

the output (the driving strategy). Training is achieved by the

scenario prediction and the objective evaluation module given

the data of possible initial pedestrian states and different can-

didates of driving efficiency objectives and driving strategies.

The following simulation case study shows how this approach

works to estimate the desired time for the autonomous vehicle

to pass an area of interest in a crowded shared space.

B. Offline Approach Case Study: Desired Time to Pass

A crowded shared space scenario in front of the Thompson

Library at The Ohio State University (OSU) was constructed

in simulation, as shown in figure 11, to demonstrate how to

estimate the desired time for the autonomous vehicle to pass

this area. In this scenario, pedestrians are constantly entering

into or exiting from the front door of the library while an

autonomous vehicle is trying to pass through the shared space.

The pedestrian density is defined as the number of pedestrians

inside the area of interest at the time the autonomous vehicle

initially enters this area. There is a random pattern of how

pedestrians enter and exit the front door, so that different

values of the pedestrian density can be generated. The vehicle

driving strategy is fixed at the current stage to estimate the

relationship between the pedestrian density and the desired

passing time. Different driving strategies can be incorporated

in the training model in the future.

For this simulation, the vehicle driving strategy generates

the desired reference speed in terms of the distance from the

closest pedestrian in the front (FOV = 60°) to the vehicle

Fig. 11. Shared space layout in front of the Thompson Library at OSU (top)
and the corresponding simulation environment (bottom).

center. The relationship between the distance and the desired

reference speed is shown in figure 12, which guarantees the

pedestrian safety due to the interactive behavior of pedestrians

when facing the vehicle, as described in the vehicle-crowd

interaction model in the previous section. A proportional

controller is applied to regulate the longitudinal speed of

the autonomous vehicle with the acceleration control gain

Ka = 0.5 and the braking control gain Kb = 5.

The simulation was run 40 times. The initial pedestrian

density and the total simulated time for the vehicle to pass this

area were recorded. Based on the recorded data, a simple linear

regression was conducted and the fitting results are shown in

figure 13. The fitted line equation is

f(x) = p̂1 · x+ p̂2 = 0.3156 · x+ 3.095. (7)

The 95% confidence bounds for the two parameters are: p̂1 ∈
(0.1369, 0.4944), p̂2 ∈ (0.6222, 5.568).

Using the regression result, the desired passing time can be

predicted when an autonomous vehicle with the same driving

Fig. 12. The action strategy of the autonomous vehicle for the time-to-pass
case. In our simulation, d1 = 6, d2 = 10, vnormal = 10mph, and vmin =
3mph.
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Fig. 13. Fitting results and the residuals for the Thompson Library scenario.

strategy wants to pass through the shared space scenario

provided with the detected pedestrian density.

VI. CONCLUSION

This study constructed a framework that combines pedes-

trian detection via multiple sensors, vehicle-crowd interactive

scenario prediction, and approaches to improve the driving

efficiency of autonomous vehicles, which finally affects the

transportation efficiency in shared spaces. Methods of pedes-

trian detection on different types of sensors were introduced

and the corresponding initial results were presented. A simu-

lation case study was conducted to demonstrate one of the

proposed approaches for improving driving efficiency. The

proposed framework has the potential to solve transportation

problems in shared spaces where crowd pedestrians and au-

tonomous vehicles interact with each other.

Future works, possible improvements, and challenges in-

clude the following:

• Pedestrian Detection: The fusion of detection results
from different sensors should be further improved. As a

fundamental structure for sensor fusion, Dempster-Shafer

theory should be adapted to fit the specific situation.

The communication between UAV-based infrastructure

sensors and on-vehicle sensors also requires further ex-

ploration, especially for how to guarantee real-time in-

formation exchange.

• Pedestrian Goal Estimation: Although linear assumption
is generally acceptable in practice, applying a high-

fidelity estimation model or incorporating more envi-

ronment information can improve the estimation result.

However, high-fidelity models and additional information

require high computational capability. It is necessary

to find an approach that can balance the estimation

performance and the computational load.

• Improving Driving Efficiency: More case studies are
desired, especially for online driving strategy planning. In

the simulation, replacing some variables, for example the

initial pedestrian density, with realistic data can improve

the reliability of the simulation. For the offline approach,

methods other than linear regression are desired to better

describe the relationship. It is also necessary to evaluate

the computational complexity of all the approaches to

address the driving efficiency problems.
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