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Abstract— We propose a data-driven control framework
for autonomous driving which combines learning-based risk
assessment with personalized, safety-focused, predictive control.
Different control strategies are used depending on the detected
risk level of the driving situation (risky vs. non-risky). This
requires a model which can understand the context of the
driving situation. In addition, autonomous driving should also
be able to provide various safe and comfortable driving styles
customized for various users, which requires a modeling method
that can capture individual driving preferences. To achieve
this, we propose a novel vehicle control framework in which
Model Predictive Control (MPC) is combined with a learning-
based risk assessment model. Random Forest (RF) methods are
trained to classify driving scenes as risky or not risky, while at
the same time capturing individually preferred travel velocities.
If driving scenes are classified as risky, then the Safety-focused
Model Predictive Control (SMPC) system will be launched
to generate control commands satisfying predetermined safety
constraints, otherwise, Personalized Model Predictive Control
(PMPC) is used instead to track the driver’s individually
preferred velocity. We demonstrate experimentally our control
framework.

I. INTRODUCTION

Advanced Driving Assistance Systems (ADASs) have ma-
tured over time, so that more and more complex assistance
functions are now available. However, most of the ADASs
currently available are still primarily safety focused, i.e.,
they are pre-programmed to execute maneuvers in response
to various hazardous situations, independent of the driver.
Safety is without a doubt the crucial and overriding concern
when designing ADAS and autonomous driving systems,
but it should also be possible to provide users with a
personalized driving experience. While the general concept
of personalization is intuitive, the precise interpretation and
goals differ between various applications and researchers [1].
The potential for personalization in ADASs was realized
early on in adaptive cruise control (ACC), a driving com-
fort system for longitudinal control. The driver is free to
choose a cruising speed among a series of pre-defined time
gaps. In the work [2], ACC systems were adapted in real-
time to individual drivers based on the observation of their
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Fig. 1: Framework of the proposed method of personalized
safety-focused control by minimizing subjective risk as per-
ceived by individual drivers vs. a conventional model.

driving style. Another application is personalization of the
decision-making process, such as in [3], in which a data
driven approach was proposed to capture the lane change
decision behavior of human drivers. In [4], [5], researchers
used a different approach to controller design by combining
a learning-based driver model that imitates the observed
driving style of the driver with Model Predictive Control
to regulate the drivers desired acceleration, however why
acceleration represents driving style remain unclear.

In this study, we focus on generating personalized driv-
ing control by minimizing subjective risk as perceived by
experiment participants, because drivers have been found
to differ in their sensitivity to risk when viewing dynamic
driving scenes. This variation in risk perception influences
their driving behavior, as well as their comfort level when
using an ADAS. Random Forest (RF) methods are applied
for driving risk assessment, because tree-based methods can
be interpreted as representing a cognitive decision-making
process. Moreover, we rank the importance of driving signals
by seeking to minimize perceived risk, in order to capture
which driving signals most influence risk perception for
various individuals. Finally, Safety-focused Model Predictive
Control (SMPC) is utilized to guarantee a safe following
distance in risky scenarios, while in non-risky scenarios
Personalized Model Predictive Control (PMPC) is used to
track the drivers preferred velocity. A flowchart of our
proposed method is shown in Fig. 1. Our contributions are
listed as follows:

1) Automated driving risk assessment: Current driving
situations are classified as risky or non-risky using
CAN signals and relative distances from surrounding
vehicles, which can be obtained using affordable sen-
sors. These risk assessment results can help driver as-
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Fig. 2: System Architecture.

sistance systems to estimate driving states. In addition,
individual differences in driving behavior as reflected
by driving signals, as well as variation in driver risk
perception, are investigated to better understand the
preferences of drivers.

2) SMPC for surrounding vehicle distance: If risky lane
changes are detected, SMPC can be used to regulate
following distance to surrounding vehicles to ensure
that a safe distance is maintained.

3) PMPC for personalized velocity: When non-risky
lane changes are detected, PMPC is used to maintain
the individually preferred velocity of the driver.

II. SYSTEM ARCHITECTURE

A detailed architecture of our proposed framework is
shown Fig. 2. Our proposed framework includes offline
risk assessment model described in Sec. IV, and online
personalized safety-focused control of which details and
experimental results are explained in Sec. V.

1) Offline risk assessment model: We have trained risk
assessment models including objective risk assessment
model and subjective risk analysis model. In order to
obtain an interpretive understanding of how individuals
perceive subjective risk, RFs are applied to analyze
features related to subjective risk while driving, such
as driving behavior signals, as well as surrounding
vehicle information. Preferred velocities are estimated
for minimizing subjective risk for individuals.

2) Online personalized safety-focused control: At the time
when the lane change decision is made, objective risk
assessment model is applied to classify the current
driving scene as risky or not risky. According to the
risk assessment results, if a risky situation is detected
then Safety-focused Model Predictive Control (SMPC)
is launched to generate a safe trajectory and driving
pattern. On the other hand, if a scene is classified
as non-risky then individual risk-related driving signal
preferences are applied to generate Personalized Model
Predictive Control (PMPC).

III. OBJECTIVE RISK AND SUBJECTIVE RISK

In related studies on driving risk assessment, the terms
objective risk and subjective risk have been frequently used
[6]. It is important to distinguish between these two basic
concepts. There is little doubt that objective risks, such as
the risk of collision, are hazardous. Earlier studies of driving
risk have focused on the avoidance of potential objective
risks. Therefore, in our study the risk assessment module is
trained to detect objective risk to be upper than threshold.
However, other studies [6] rejected the idea that objective
risk is a primary determinant of driver behavior, suggesting
instead that drivers generally seek to avoid behavior that
elicits the subjective perception of danger, and that behavior
adjustments are made so as to match these estimates with a
target level of acceptable risk [7]. Therefore, in this study
personalized driving preferences are designed to minimize
subjective risk.

1) Objective Risk: The objective probability of being
involved in an accident.

2) Subjective Risk (or Perceived Risk): The drivers own
estimate of the (objective) probability of a collision.
Such estimates are the output of a cognitive process.

A. Driving data

Assessments of objective and subjective risk are based on
driving data, which include driver behavior signals, vehicle
status and surrounding vehicle information. Driving data
was collected during real-world expressway driving using
multi-modal sensors mounted on an experimental vehicle [8].
Details of the collected data are described in Table I.

TABLE I: Features likely to indicate driving risk.

Feature categories No. Features
1 Braking force

Driving behavior 2 Acceleration force
3 Steering wheel angles
4 Velocity

Vehicle states 5 Lateral acceleration
6 Longitudinal acceleration

B. Surrounding vehicle information

Assessments of situational risk are also strongly influ-
enced by the presence and activity of surrounding vehicles,
therefore the environmental information used in this study
includes the relative positions of surrounding vehicles in
relation to the drivers own vehicle, as recorded by radar
sensors. We divided the area surrounding the drivers vehicle
into six areas as shown in Fig.3, and reciprocal values of
the relative distances from the nearest surrounding vehicle
in each area are calculated.

C. Subjective risk assessment

Data on subjective risk assessment was collected from
ten experiment participants as they viewed 857 videos of
lane changes (434 lane changes to the left and 423 to the
right). The videos were manually extracted from dash camera
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Fig. 3: Area codes for the locations of surrounding vehicles.
Relative distances from the ego vehicle are measured in time
steps k.

footage of real-world driving and included three seconds of
video before and after each lane change. After viewing each
lane change, participants were asked to report the level of
risk they perceived, using a risk level score as follows: 1 =
very safe, 2 = safe, 3 = neither safe nor unsafe, 4 = risky, 5
= very risky. Screenshots from a typical lane change video
are shown in Fig. 4.

Fig. 4: Scenes from a typical left lane change video. Exper-
iment participants were asked to assign risk levels to each
scene (from very safe to very risky) while viewing videos of
lane changes to the right and left.

D. Objective risk score definition

The objective risk level of each lane change was defined
as the average of the subjective risk scores of our ten partic-
ipants, which was normalized using Likert’s sigma method
[9]. This allows us to average out individual differences in
subjective risk perception, to better approach the objective
level of risk.

IV. AUTOMATED DRIVING RISK ASSESSMENT

The goal of our proposed automated risk assessment sys-
tem is to be able to detect whether the current driving scene
is objectively risky or not. We also investigate differences
in the importance of various features of lane changes on the
risk assessments of our participants.

A. Random Forest for risk classification

Random Forests (RFs) are a supervised ensemble learning
method consisting of a combination of decision trees which
are used as predictors. These decision trees are grown
from randomized subsets (also known as bootstrap samples)
[10], which use averaging to improve predictive accuracy
and control over-fitting. In this study, automated driving
risk assessment is formulated as a supervised classification
problem. We define the driving behavior data as X∈RDx×Nx

, where Dx is the dimensionality of the data; and Nx is the
amount of the data, i.e., the total number of time steps.
Before the data is passed on to the RFs, a normalization

operation is performed on each element of xt such that the
columns of xt are centered to have a mean of 0 and are scaled
to have a standard deviation of 1. Objective risk Y ∈ RN

is set as the target variable, where yn is the observed risk
label as [0,1], where represents (0: safe, 1: risky) for target
lane change number n, and N represents the number of lane
changes. If we can build many small, weak decision trees
in parallel, we can then combine the trees to form a single,
strong learner by averaging or taking the majority vote to
determine our risk assessment result.

B. Objective risk assessment

Objective risk was set to be the target variable for risk
assessment since our equations are set up as classic super-
vised classification problems, such that the F-measure can be
used as a measurement of validity in order to measure the
accuracy of our models. We counted the true positive (TP),
false positive (FP) and false negative (FN) rates in ten trials
and calculated the F-measures as follows:

F-measure =
2× Recall × Precision

Recall + Precision
(1)

where Precision = TP/(TP+FP) and Recall = TP/(TP+FN).
We selected surrounding vehicle information and driving
signals to assess objective risk. The F-measures were ob-
tained using linear Support Vector Machine (SVM), Gaussian
kernel SVM, Gaussian Process, Random Forest, Multi-Layer
Perceptron (MLP) with three layers, AdaBoost and Gaussian
Naive Bayes methods. The hyper-parameters of each method
were tuned using grid search of 5-cross validation. The
results for each F-measure computation method using our
two selected risk factors are shown in Table II. Results for
the top two F-measure methods are underlined for each risk
factor examined separately, as well as for both risk factors
examined together. In case of surrounding vehicle infor-
mation, RFs scored highest, on the other hand, AdaBoost
showed the best accuracy using driving signals. However,
surrounding vehicle information are more influential than
driving signals on risk perception [11], so that the results
of this comparison showed that RFs were the most accurate
method of risk assessment for use in our proposed automated
risk assessment method.

TABLE II: Comparison of various F-measures for objective
risk assessment using surrounding vehicle and driving signal
information.

Methods Surrounding vehicle Driving signals Both
SVM(linear) 0.783 0.765 0.781
SVM(RBF) 0.791 0.745 0.765
GaussianProcess 0.624 0.452 0.636
RF 0.843 0.822 0.838
MLP 0.552 0.445 0.512
AdaBoost 0.783 0.862 0.801
GaussianNB 0.483 0.351 0.472

3855

Authorized licensed use limited to: The Ohio State University. Downloaded on July 21,2020 at 15:53:21 UTC from IEEE Xplore.  Restrictions apply. 



C. Interpreting risk perception from driving signals

In our previous work [11], in order to investigate indi-
vidual differences on subjective risk, we identified various
driving-related data features which were likely to influence
risk perception, and divided them into driving behavior signal
features and surrounding vehicle information features. When
calculating feature importance, our results were normalized
to total one. The risk level rankings of ten participants in
our video viewing experiment were analyzed. Our feature
importance comparison results revealed that all had a strong
tendency to focus mainly on frontal areas of surrounding
vehicles (Area 1, Area 3, and Area 5) when assessing the
riskiness of the lane change video scenes. However, this
may be the result of a lack of additional information, since
only frontal view video was used during our subjective
risk perception data collection process as shown in Fig.
5 (a). The results of our feature importance investigation
for driving signals shows variation in subjective risk during
lane changes are quite influential by velocities as are shown
in Fig. 5 (b). Therefore, in our study, we extract median
values from velocity sequence as preferred velocities, and
min and max velocities are extracted from velocity sequence
for individuals to set constraints for PMPC.

Fig. 5: Feature importance analysis results for ten partici-
pants. (a) Surrounding vehicle area. (b) Driving signal.

V. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) has been utilized for
autonomous lane change maneuvers in various applications.
MPC meets the requirement of our framework, because the
desired driving speed is the primary concern in personalized
safety-focused control and the absolute safety should also
be considered. In our study, two types of MPCs are used to
generate driving commands. The first one is safety-focused
MPC (SMPC), which is used to keep a objective safe desired
speed. The second one is the personalized MPC (PMPC),
in which the desired speed is replaced by the personalized
preferred speed obtained from the subjective risk assessment.
Both MPCs have to satisfy some strict safe constraints.

A. Vehicle model

A kinematic bicycle model (see Fig. 6) is used to describe
the dynamics of the ego vehicle [12], which is defined as
follows:

ẋ = vcos(φ)
ẏ = vsin(φ)
v̇ = a

φ̇ =
v
L

tan(δ )

(2)

where x, y are the position of the vehicle. φ represents the
yaw angle, v is the longitudinal velocity of the vehicle, and L
represents the distance from the front to rear wheels. There
are two control inputs: a the longitudinal acceleration and δ

the steering angle.

Fig. 6: Kinematic Bicycle Model
The above model defines the following state vector z =

[x,y,v,φ ]. We can get a discrete-time model by using Forward
Euler Discretization at time step k as follows:

zk+1 = f (zk,uk) (3)

where uk = [δk,ak] contains the control inputs, steering angle
δ and longitudinal acceleration a at time step k. If a is
positive, the control input will be gas pedal operation, and
if negative, the control input will be brake pedal operation,
respectfully. The objective of the controller is to track
the reference path (when a lane change is initialized, the
reference path is switched to the target lane) by minimizing
a cost function to obtain the optimal control sequence while
operating within constraints.

B. Safety-focused Model Predictive Control

SMPC generates a safety maneuver by tracking a safe
desired speed, which is set to 80km/h according to Japanese
convention. In the meantime, a safe distance to the preceding
vehicle (if there is one) should as be kept at every time step.

1) Safe Speed and Steering Constraints: In addition to
physical limit on the steering angle, a more strict steering
angle constraint is imposed on the SMPC, which can be
expressed as:

δmin ≤ δk|t ≤ δmax (4)

Similarly, the speed should be constrained at every time step
so that the ego vehicle only drives within a safe speed bound:

vmin,safe ≤ vk|t ≤ vmax,safe (5)

where vmax is the speed limit of the road.
2) Safe Distance: One primary objective of SMPC is

to guarantee that the ego vehicle never collides with sur-
rounding vehicles. This safety requirement is enforced by
the following constraints on the relative distance between all
possible surrounding vehicles and the ego vehicle:

dk,n|t ≥ dsafe n ∈ [1, ...,6] (6)
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where dsafe is the minimum safe distance to be kept, and n
represents the index of the surrounding vehicle areas. In the
simulation, surrounding vehicle behaviors are generated by
intelligent driver model (IDM) [13]. which is a crash-free
car-following model configured to drive naturally.

3) Cost Function in SMPC: The cost function for SMPC
is designed so that it tracks the reference trajectory associated
with the desired speed:

JSMPC =
t+Nc

∑
k=t

[
α (zk− zk,ref)

2
]
, (7)

where zk,re f = [xk,re f ,yk,re f ,vdesired ,φk,re f ] is the reference
path associated with the desired speed, and α is a parameter
that penalizes the deviation from the reference trajectory and
from the desired safe speed, respectively. SMPC focuses
on maintaining safe distances to surrounding vehicles and
keeping a desired speed as much as possible.

C. Personalized Model Predictive Control

The goal of PMPC is to track individually preferred
velocity in the non-risky situations while satisfying safety
constraints, therefore, personalized constraints and cost func-
tions are designed as follows.

1) Safe Speed and Steering Constraints: Actuator limits
follow the same constrains as with SMPC. The speed limit is
enforced according to drivers individually preferred velocity
limits:

ṽmin ≤ vk|t ≤ ṽmax (8)

where ṽmin and ṽmax are extracted from subjective risk
analysis results.

2) Cost Function in PMPC: Similarly, the cost function:

JPMPC =
t+Nc

∑
k=t

[
α (zk− zk,ref)

2
]
, (9)

where zk,re f = [xk,re f ,yk,re f ,vindividual,φk,re f ], ṽindividual is the
velocity extracted from our subjective risk analysis, which
is the individual preferred velocity for ten participants. α is
defined the same as before.

D. Experiment setup

We validated the effectiveness of SMPC and PMPC in
simulation. Parameter values of the actuator limits and safety
constraints are defined in Table III. The proposed framework
was evaluated in two steps. First, we compared the trajec-
tories generated by SMPC, PMPC #1 for participant1 and
#2 for participant2. They were evaluated in five lane change
scenes, in which the velocity profiles were compared.

TABLE III: SMPC and PMPC controller design parameters

Parameter Value Parameter Value
δmin -15[deg] δmax 15[deg]
vmax,safe 100[km/h] dsafe 5[m]
vmin,safe 60[km/h] vdesired 80[km/h]
α 0.01 β 1

E. Experimental results

1) Generated trajectory: Simulation results of the tra-
jectories generated using SMPC, and PMPC for participant
#1 are shown in Fig. 7. Surrounding vehicles were set in
the same initial relative distance in both SMPC and PMPC,
and running by IDM models. The trajectory generated using
SMPC maintained relatively slower in the same time steps
with PMPC. Trajectories generated using PMPC for partici-
pant #1 were forward than SMPC and surrounding vehicles
were also driven faster.

2) Velocity profile: Our proposed framework was eval-
uated on switches by objective risk classification result.
Velocity profiles generated for participant1 and participant2,
compared with actual velocity and velocity generated by
conventional MPC during five lane change scenes. The result
is shown in Fig. 8. It showed that different MPCs were
launched according to risk assessment result, SMPC gener-
ated lower speed, which could guarantee safety in dynamic
environment, while PMPC generated preferred velocities
extracted from real world data to capture individual driving
patterns.

3) Subjective risk assessment: In order to validate our
proposed framework, we compared average of subjective risk
assessment result during lane change scenes using actual
velocities, velocities from SMPC and PMPC for ten partici-
pants. The result is shown in Fig. 9. The result showed that
velocities generated from SMPC increased subjective risk
for participant #1, #2, #6-#10, which can be understood that
safety-focused control in non-risky scenes would increase
subjective risk according to individuals, however velocity
generated from PMPC decrease or remain the equivalent
assessment for most of the participants. Therefore, in our
proposed system, PMPC can be applied to reduce the sub-
jective risk assessment for individuals.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a data-driven control framework
for autonomous driving. Different control strategies are used
depending on the driving situation (risky or non-risky).
Offline, RF are trained to build objective risk assessment
model, and to extract preferred velocities by minimizing
subjective risk for different participants. Then, in our online
personalized safety-focused system, different control strategy
will be used according to the risk estimation result. In future
work, we will upgrade our vehicle model to a dynamic
bicycle model, which is more appropriate for high speed
scenarios. Our final objective is to build a human-in-the-loop
framework to generate safe, personalized control responsive
to the driving situation.
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Fig. 7: Left: Simulated SMPC. Right: Simulated PMPC #1 for participant1. The black vehicle is the ego vehicle and the
blue vehicles are surrounding vehicles with the same initial positions. The red lines show the pre-defined lane change start
timing, and the pink dotted lines show the trajectories.

Fig. 8: Velocity profiles generated for participant1 (red line,
whose preferred velocity 91.2km/h) and participant2 (green
line, whose preferred velocity 93.8km/h) compared with
actual velocity and velocity generated by conventional MPC
during five lane change scenes.

Fig. 9: Subjective risk assessment result. PMPC decreased
or maintained subjective risk perception for most of the
participants.
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