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Abstract— Predicting the collective motion of a group of
pedestrians (a crowd) under the vehicle influence is essential
for the development of autonomous vehicles to deal with mixed
urban scenarios where interpersonal interaction and vehicle-
crowd interaction (VCI) are significant. This usually requires
a model that can describe individual pedestrian motion under
the influence of nearby pedestrians and the vehicle. This study
proposed two pedestrian trajectory datasets, CITR dataset and
DUT dataset, so that the pedestrian motion models can be
further calibrated and verified, especially when vehicle influence
on pedestrians plays an important role. CITR dataset consists
of experimentally designed fundamental VCI scenarios (front,
back, and lateral VCIs) and provides unique ID for each
pedestrian, which is suitable for exploring a specific aspect
of VCI. DUT dataset gives two ordinary and natural VCI
scenarios in crowded university campus, which can be used
for more general purpose VCI exploration. The trajectories of
pedestrians, as well as vehicles, were extracted by processing
video frames that come from a down-facing camera mounted
on a hovering drone as the recording equipment. The final
trajectories of pedestrians and vehicles were refined by Kalman
filters with linear point-mass model and nonlinear bicycle
model, respectively, in which xy-velocity of pedestrians and
longitudinal speed and orientation of vehicles were estimated.
The statistics of the velocity magnitude distribution demon-
strated the validity of the proposed dataset. In total, there are
approximate 340 pedestrian trajectories in CITR dataset and
1793 pedestrian trajectories in DUT dataset. The dataset is
available at GitHub1.

I. INTRODUCTION

In mixed urban scenarios, intelligent vehicles may have to

cope with a certain number of surrounding pedestrians. In

such scenarios, it is necessary to understand how vehicles

and pedestrians interact with each other. This interaction has

been studied for some time, but in most cases, the number

of pedestrians is small so that the interpersonal interaction

is usually ignored, which is not always the case in real

world applications. For example, under the same vehicle
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influence, a group of large number of pedestrians may behave

differently than a group of small number of pedestrians,

because a larger group, i.e., a crowd, plays a more dominant

role in the vehicle-pedestrian interaction. This vehicle-crowd

interaction (VCI) scenario has been drawing attention in re-

cent years. Specific models [1] [2] [3] [4] have been designed

to describe the individual motion of a crowd in some specific

situations where both interpersonal and vehicle-pedestrian

interaction were differently considered. To either calibrate

or train such models above and further evaluate the their

performance, providing ground truth trajectories of VCI is

becoming increasingly important. However, to the best of

authors’ knowledge, there is no public dataset that covers

VCI, especially in scenarios where interpersonal interaction

is not negligible. To fill this gap, we built two VCI datasets.

One (CITR dataset) focuses on fundamental VCI scenarios in

controlled experiments, and the other (DUT dataset) consists

of natural VCIs in crowded university campus.

In general, the approaches for modeling pedestrian motion

in crowd can be classified in two categories. Traditionally, a

rule-based model, e.g., social force models [5], is designed

based on human experience and the parameters of the

model are then calibrated by using ground truth pedestrian

trajectories [1] [6]. Recently, with the growing popularity of

deep learning, long-short term memory (LSTM) networks

have been applied to model this pedestrian motion [7] [8] in

the hope of taking advantage of the potential in deep neural

networks, which heavily relies on pedestrian trajectory data.

The requirement of ground truth pedestrian trajectories in

both approaches confirmed the necessity of building more

pedestrian/crowd trajectory dataset, especially in scenarios

that have not been covered in existing ones. Existing dataset

such as ETH [9] and UCY [10] only covers interpersonal

interaction, which is not suitable for VCI. Stanford Drone

Dataset [11] includes some vehicle trajectories, but the

number of surrounding pedestrians is small so that there is

little interpersonal interaction. This work aims to provide a

new type of pedestrian trajectory dataset that can enrich the

existing datasets, and meanwhile assists in solving pedestrian

safety related problems in the areas of intelligent vehicles and

intelligent transportation systems.

Unlike pure interpersonal interaction, VCI introduces more

complexity. This complexity can be decomposed by separat-

ing vehicle influence from interpersonal influence and by

identifying different types of vehicle influence on pedestri-

ans. To this end, in our CITR dataset, controlled experiments

were designed and conducted in a way that from interper-

sonal interaction scenarios to VCI scenarios, they can be
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pairwisely compared so that separate effect, for example, the

existence (or not) of a vehicle or the walking direction of the

crowd, can be identified and analyzed.
Some pedestrian motion models may consider personal

characteristics, i.e., each pedestrian applies a model with a

unique parameter set. CITR dataset provides such personality

by assigning the same pedestrian always the same ID, hence

more options are provided to researchers.
To supplement each other, in DUT dataset natural VCI

data was constructed from a series of recordings of crowded

university campus. A down-facing camera attached to a drone

hovering above and far away from the ground was used as the

recording equipment. Therefore, both the crowd and the ve-

hicle are unaware of being observed, hence producing natural

behavior. The DUT dataset can be used for final verification

of VCI models or some end-to-end VCI modeling design.
Both CITR and DUT datasets applied a hovering drone as

the recording equipment. This ensured the accuracy of the

extracted trajectories by avoiding the issue of occlusion, a

major deficiency if pedestrians are detected from the view

of sensors mounted on moving vehicles or buildings.
The trajectories of individual pedestrians and vehicles

were extracted by image processing techniques. Due to the

unavoidable instability of the camera attached to a hovering

drone (even with a gimbal system), the recorded videos

were stabilized before further processing. A robust tracking

algorithm (CSRT [12]) was then applied to automatically

track pedestrians and vehicles, although the initial positions

still have to be manually selected. In the last step, different

Kalman filters were applied to further refine the trajectories

of both pedestrians and vehicles. This design avoided tedious

manual annotation as done in the ETH and UCY dataset [9]

[10], and possible imprecision of the tracking as done in the

Stanford dataset [11].
In general, the contribution of the study can be summa-

rized as follows:

• We built a new pedestrian trajectory dataset that covers

both interpersonal interaction and vehicle-crowd inter-

action.

• The dataset includes two portions. One comes from

controlled experiments, in which fundamental VCIs

are covered and each person has a unique ID. The

other comes from crowded university campus scenarios

where the pedestrian reaction to a vehicle is completely

natural.

• The application of a drone camera for video recording,

a new design of tracking strategy, and the Kalman filters

for refining trajectories made the extracted trajectories

as accurate as possible.

In the rest of the paper, section 2 reviews related dataset

regarding pedestrian motion and vehicle-pedestrian inter-

action. Section 3 details the configuration of both CITR

and DUT dataset. Section 4 describes the algorithm applied

for trajectory extraction and the Kalman filters used for

trajectory refinement. Section 5 shows some statistics of our

dataset. Section 6 concludes the study and discusses possible

improvement.

II. RELATED WORKS

Pedestrian dataset can be in general divided into two

categories: world coordinate (WC) based dataset and vehicle

coordinate (VC) based dataset. WC based dataset is usu-

ally applied to studies that need to consider interpersonal

interaction, because the collective motion of pedestrians is

clear, accurate enough, and easily accessible, while VC based

dataset doesn’t contain enough instances of interpersonal in-

teraction. Popular WC based dataset includes UCY Crowds-

by-Example dataset [10], ETH BIWI Walking Pedestrians

dataset [9], Town Center dataset [13], Train Station dataset

[14] and Stanford Drone dataset [11]. They have been

widely used for crowd motion analysis, risk detection, and

the calibration/training of various rule-based and learning-

based pedestrian motion models [15]. The proposed dataset

in this study aims to enrich the WC based dataset by

incorporating the vehicle-crowd interaction. A comparison

among the proposed and existing WC based datasets are

shown in table I. VC based dataset is usually used for

single/multiple, but not too many, pedestrian detection and/or

intention estimation from a mono camera mounted in front of

the vehicle. A couple of datasets such as Daimler Pedestrian

Path Prediction dataset [16] and KITTI dataset [17] provide

vehicle motion information, hence the trajectories of both

the vehicle and pedestrians in world coordinate can be

estimated by combining vehicle motion and video frames.

The estimated trajectories can serve as ground truth data

for vehicle-pedestrian interaction but with little interpersonal

interaction due to the limited number of pedestrians.

Some existing datasets also apply a down-facing camera

attached to a hovering drone as the recording equipment. For

example, in Stanford Drone dataset [11], the utilization of

drone eliminated occlusion so that all participants (pedestri-

ans, cyclists, cars, carts, buses) were individually tracked.

Another dataset HighD [18], which focuses on vehicle-

vehicle interaction on highway driving, also successfully

demonstrated the benefit of using the hovering drone to

remove occlusion.

III. DATASET

A. CITR Dataset

The controlled experiments were conducted in a parking

lot near the facility of Control and Intelligent Transportation

Research (CITR) Lab at The Ohio State University (OSU).

Figure 1 shows the layout of the experiment area. A DJI

Phamton 3 SE Drone with a down-facing camera on a gimbal

system was used as the recording equipment. The video reso-

lution is 1920×1080 with an fps of 29.97. Participants are the

members of CITR Lab at OSU. During the experiments, they

were instructed only to walk from one small area (starting

points) to another small area (destinations). The employed

vehicle was an EZ-GO Golf Cart, as shown in figure 2.

3 markers were put on top of the vehicle to help vehicle

motion tracking, of which the vehicle position is calculated

by geometry. The reason of using 3 markers is to reduce the

tracking noise as much as possible.
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TABLE I

COMPARISON WITH EXISTING WORLD COORDINATE BASED PEDESTRIAN TRAJECTORY DATASET

Dataset
Name

Scenarios Pedestrian
Density

Other Partic-
ipants

Method of Anno-
tation

FPS of
Annota-
tion

Amount
of Tra-
jectories

Camera De-
pression An-
gle (degrees)

From Pixel
to World
Coordinate

Video Res-
olution

ETH campus,
urban street

medium no manual 2.5 650 about 70-80 matrix file 720x576

UCY campus, park,
urban street

high, low no manual interpolated 909 about 20-50 partially
measurable

720x576

Stanford campus medium,
low

cyclist, bus,
golf cart, car

tracking + inter-
polation

29.97 3297 90 n.a. 595x326

CITR specifically
designed

medium golf cart CSRT tracker +
initial annotation

29.97 340 90 measured 1920x1080

DUT campus high, low,
medium

car CSRT tracker +
initial annotation

23.98 1793 90 measured 1920x1080

Town
Center

urban street medium no manual + track-
ing verification

25 2200 about 25-35 n.a. 1920x1080

Train
Station

train station
hall

high,
medium

no KLT keypoint
tracker

varied 47866 about 40-50 n.a. 720x480

Interaction Area

Fig. 1. Layout of the controlled experiment area (a parking lot near CITR
Lab at OSU). The vehicle (a golf cart) moves back and forth between two
blue areas. Pedestrians move back and forth between two green areas. The
interaction happens in the orange area, which is also the central area of the
recording.

Fig. 2. EZ-GO Golf cart employed in the experiments (left) and makers
on top of the vehicle (right). In the vehicle tracking process, 3 markers
(M1,M2,M3) were continuously being tracked. By geometry, P1, P2 were
calculated and recorded for vehicle orientation and Pc as the vehicle center
position.

The designed fundamental scenarios were generally di-

vided into 6 groups, as shown in figure 3. They were

designed such that by comparing pedestrian-only scenarios

(pure interpersonal interaction) and VCI scenarios, the ve-

hicle influence can be separated and analyzed. Therefore,

except for the difference due to the existence (or not) of a

vehicle, all other factors remain the same such as pedestri-

ans’ intention (starting point and destination), pedestrians’

Lateral Interaction Late
(

eral Interaction Late
((Unidirectional)

Lateral Interaction Lateral Interaction
(Bidirectional)

Front Interaction

Back Interaction

Pedestrian Only Pedestrian Only 
(Unidirectional)

Pedestrian Only Pedestrian Only 
(Bidirectional)

Fig. 3. Designed scenarios of controlled experiments. Red arrows indicate
the motion of pedestrians/crowd, while blue arrows indicate vehicle motion.

TABLE II

NUMBER OF CLIPS IN EACH SCENARIO OF CITR DATASET

Scenarios Num. of clips

Pedestrian only (unidirectional) 4
Pedestrian only (bidirectional) 8

Lateral interaction (unidirectional) 8
Lateral interaction (Bidirectional) 10

Front interaction 4
Back interaction 4

identity (who are these pedestrians), and environment layout

(location, time period, weather, etc.). The scenarios of front,

back, and side interactions help exploring typical VCIs which

could guide the design of pedestrian motion models.

After processing, there are 38 video clips in total, which

include approximate 340 pedestrian trajectories. The detailed

information is presented in table II.

B. DUT Dataset

The DUT dataset was collected at two crowded locations

in the campus of Dalian University of Technology (DUT)

in China, as shown in figure 4. One location includes an

area of pedestrian crosswalk at an intersection without traffic

signals. When VCI happens, in general there is no priority
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Fig. 4. Locations of DUT dataset. Upper: an area of crosswalk at an
intersection without traffic signals. Lower: a shared space near a roundabout.

for either pedestrians or vehicles. The other location is a

relatively large shared space near a roundabout, in which

pedestrians and vehicles can freely move. Similar to CITR

dataset, a DJI Mavic Pro Drone with a down-facing camera

was hovering above the interested area as the recording

equipment, high enough to be unnoticed by pedestrians and

vehicles. The video resolution is 1920×1080 with an fps of

23.98. Pedestrians are primarily made up of college students

who just finished classes and on their way out of classrooms.

Vehicles are regular cars that go through the campus.

With this configuration, scenarios of DUT dataset consists

of natural VCIs, in which the number of pedestrians varies

hence introducing some variety of the VCI.

After processing, there are 17 clips of crosswalk scenarios

and 11 clips of shared space scenarios, including 1793 trajec-

tories. Some of the clips contains multiple VCIs, i.e., more

than 2 vehicles interacting with pedestrians simultaneously,

as in the lower picture in figure 4.

Figure 5 and 6 demonstrate the processed example trajec-

tories of the DUT dataset.

IV. TRAJECTORY EXTRACTION

Four procedures were done to extract the trajectories of

both pedestrians and vehicles from the recorded top-view

video.

A. Video Stabilization

First, the raw video was stabilized to remove the noise

caused by unstable drone motion. This procedure applies

Fig. 5. Trajectories of vehicles (red dashed line) and pedestrians (colorful
solid lines) in a clip of the intersection scenario.

Fig. 6. Trajectories of vehicles (red dashed line) and pedestrians (colorful
solid lines) in a clip of the shared space scenario.

several image processing techniques, which include scale-

invariant feature transform (SIFT) algorithm for finding key-

points, k-nearest neighbors (k-NN) for obtaining matches,

and random sample consensus (RANSAC) for calculating

perspective transformation between each video frame and the

first video frame (reference frame). The detailed procedure

is illustrated in algorithm 1.

B. Vehicle and Pedestrian Tracking

Once the video was stabilized, pedestrians and vehicles

were automatically tracked by using Discriminative Cor-

relation Filter with Channel and Spatial Reliability (CSR-

Algorithm 1: Video Stabilization

Result: calibrated frames F cal
i

set 1st frame F1 as reference Fref ;

for each new frame Fi, i = 2, 3, · · · do
apply SIFT to find key-points in Fi and Fref ,

separately;

apply KNN to find matches;

obtain good matches by removing matches that have

long distance of pixel positions in Fi and Fref ;

apply RANSAC for the good matches to calculate

the transformation matrix Mi from Fi to Fref ;

obtain F cal
i by applying transformation Mi to Fi;

end
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DCF) [12]. In the tracking process, raw videos are partitioned

into small clips, which contain separate and complete VCIs.

Once pedestrians appear in the region of interest (ROI), the

initial positions were manually given, hence initializing the

trackers. When they exited the ROI, the trackers stopped. Due

to the vehicle size, vehicle tracking was done by individually

tracking either the 3 markers on top of the vehicle (CITR

dataset) or four corners of vehicle (DUT dataset). Then,

the vehicle position was calculated based on geometric

relationship of these tracked points.

C. Coordinate Transformation

Pedestrian trajectories obtained in the previous step are in

the coordinates of image pixels. A coordinate transformation

operation is necessary to convert the trajectories from image

pixels into actual scale in meters.

This can be done by either measuring the actual length of

a relatively long reference line in the scene or measuring

the distance between markers on top of the vehicle (if

applicable). The assumption here is that, compared with

the altitude of the hovering drone, the distance between

the ground plane and the tracking plane (the plane of a

pedestrian’s head or the vehicle’s top) is very small so that

both planes can be treated as the same plane.

D. Trajectory Filtering

In the last step, Kalman filters [19] was applied to remove

the noise and refine the trajectories. It is sufficient to use a

linear Kalman filter with a point-mass model for pedestrian

trajectories, in which the 2D velocity (in x and y axes) can

be estimated. The state transition and measurement follows

the equations:

ẋ = v + w1 (1)

v̇ = a+ w2 (2)

y = x+ v, (3)

where position x ∈ R
2 and velocity v ∈ R

2 are the system

state, y ∈ R
2 is the measurement (recorded position), w =

[wT
1 , w

T
2 ]

T ∼ N(0, Q) the state transition noise, and v ∼
N(0, R) the measurement noise.

When applying the Kalman filter, it is assumed that a = 0,

which implies a constant velocity model.

Vehicle motion is somehow constrained, e.g., the lateral

motion/velocity can not be abruptly changed. Therefore, an

extended Kalman filter with a nonlinear kinematic bicycle

model was applied. The bicycle model follows:

ẋx = v cos(θ + β) + w1 (4)

ẋy = v sin(θ + β) + w2 (5)

θ̇ =
v

lr
sinβ + w3 (6)

v̇ = a+ w4 (7)

β = arctan

(
lr

lf + lr
tan δf

)
(8)

y = [xx, xy]
T + v, (9)

TABLE III

MEAN VELOCITY MAGNITUDE

Dataset Mean velocity Mean walking velocity

CITR 1.2272 1.2435
DUT 1.3661 1.3825

where xx, xy stands for the position, v is the longitudinal

speed, β is the velocity angle with respect to the vehi-

cle C.G., lf , lr are the distances from C.G. to the front

wheel and the rear wheel, respectively, a is the longitudinal

acceleration, δf is the steering angle of the front wheel,

w = [w1, w2, w3, w4]
T ∼ N(0, Q) the state transition error,

and v ∼ N(0, R) the measurement error.

At each step of the extended Kalman filter, the system is

linearized at current state by calculating its Jacobian. It is

assumed that both inputs a = 0 and δf = 0.

V. STATISTICS

To give a more detailed description of the above dataset,

the magnitude of pedestrian velocities (estimated by the

Kalman filter) in all video clips were analyzed. The reason of

analyzing velocity magnitude is that, pedestrian velocity is

the most intuitive way of describing pedestrian motion, and,

as argued in [15], if pedestrian trajectories are used to train

neural network based pedestrian model, using pedestrian

velocity (offset in motion at the next time step) is better than

using absolute position, because different reference systems

(how the global coordinates are defined) in different dataset

usually cause incompleteness of training data.

Figure 7 and 8 show the distribution of the velocity

magnitude for CITR dataset and DUT dataset, respectively.

Table III presents the mean velocity magnitude and mean

walking velocity magnitude. The walking velocity excludes

the velocity magnitude that is less than 0.3m/s, at which

the pedestrian is considered as either standing or yielding

to the vehicle instead of walking. The value of 0.3m/s was

intuitively selected based on the shape of the histogram. It

is obvious that, from the velocity distribution and the mean

velocity results, the pedestrians in DUT dataset walk faster

than the pedestrians in CITR dataset. The reason could be

that, when conducting controlled experiments, as in the CITR

dataset, pedestrians were more relaxed, while in the DUT

dataset, pedestrians were in a little bit hurry because they

just came out of classes. However, in general, the distribution

and the mean velocity magnitude are in accordance with the

preferred walking velocity in various situations [20].

VI. CONCLUSION

Two dataset, experimentally designed CITR dataset and

natural DUT dataset, were built in this study for pedestrian

motion models that consider both interpersonal and vehicle-

crowd interaction. The trajectories of pedestrians and ve-

hicles were extracted by image processing techniques and

refined by Kalman Filters. The statistics of the velocity

magnitude validated the proposed dataset.

This study can be regarded as an initial attempt to incor-

porate VCI into pedestrian trajectory dataset. The amount of
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Fig. 7. Distribution of velocity magnitude in CITR dataset

Fig. 8. Distribution of velocity magnitude in DUT dataset

the trajectories and the variety of VCI scenarios are somehow

limited, therefore, it is expected to build more dataset of

various scenarios. It is also expected to build a benchmark

that tests a couple of famous pedestrian motion models,

which is our major future work. Another improvement

could be automatically detecting/selecting initial positions

of pedestrians when they entered the ROI, hence totally

removing manual operation. From the aspect of personal

characteristics, it would help if the pedestrians in the dataset

could be identified according to their age, gender, head

direction, and other features, although manual annotation of

these features seems to be the only option at current stage.
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