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A Social Force Based Pedestrian Motion Model Considering

Multi-Pedestrian Interaction with a Vehicle

DONGFANG YANG, ÜMIT ÖZGÜNER, and KEITH REDMILL, The Ohio State University

Pedestrian motion modeling in mixed traffic scenarios is crucial to the development of autonomous systems in
transportation related applications. This work investigated how pedestrian motion is affected by surrounding
pedestrians and vehicles, i.e., vehicle-pedestrian interaction. A social force based pedestrian motion model
was proposed, in which the effect of surrounding pedestrians was improved and the effect of vehicles was
newly designed. Variable constraints dependent on vehicle influence as well as nearby pedestrian density
were imposed on the velocity and acceleration of the pedestrian motion. This work focuses on fundamental
patterns of multi-pedestrian interaction with a low speed vehicle (front, back, and lateral interaction in open
space). In other words, the application of the model is not restricted to specific scenarios such as crosswalks.
Parameters of the proposed model were calibrated by the genetic algorithm (GA) based on trajectory data of
the same vehicle-pedestrian interaction patterns from controlled experiments. The proposed model is able to
simulate complex self-designed vehicle-pedestrian interaction scenarios. The effectiveness of the proposed
model was validated by comparing the simulated trajectories with ground truth trajectories under the same
initial conditions, and by evaluating the pedestrian behavior of avoiding vehicle in the simulation of self-
designed scenarios.
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1 INTRODUCTION

Pedestrian behavior plays a crucial role in urban mobility. In complex urban scenarios, pedestrian
behavior is affected by various types of traffic participants, of which in most cases are surrounding
pedestrians and vehicles. Vehicles are usually regarded as the most dominating participants, which
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have considerable influence on pedestrian behavior and even threaten the safety of pedestrians in
extreme situation. In the meantime, pedestrian behavior is also affected by surrounding pedes-
trians. For example, multiple pedestrians may feel more confident than an individual pedestrian
when interacting with a vehicle. This work focuses on pedestrian motion, which is the most direct
form of pedestrian behavior. The pedestrian motion is described by a social force based mathemat-
ical model. The model primarily addresses how the pedestrian motion is affected by surrounding
pedestrians and vehicles. With the model applied on each pedestrian, the interaction between
multiple pedestrians and a vehicle is described. Typical real traffic scenarios include shared spaces
or crowded streets of special events. In such scenarios, both pedestrians and vehicles have equal
rights of the road/space, hence not being restricted by specific traffic rules.

The mathematical modeling of pedestrian motion began with pedestrian-pedestrian
interaction—for instance, only the effect from surrounding pedestrians is considered. The
pioneer work was the social force model [12], which was originally designed for crowd mo-
tion/flow simulation and analysis. It can reproduce typical crowd motion patterns such as lane
formation and fluctuation, as summarized in a work reviewing fundamental phenomena of pedes-
trian crowd [27]. Later on, mathematical modelings such as dynamic programming [13], discrete
choice [2], cognitive method [22], linear trajectory avoidance [25], and heuristic with Voronoi dia-
gram [30] were proposed. They were somehow derived from the social force model but with more
emphasis on computational efficiency and simplicity. These models rely on verified handcrafted
mathematical rules to describe the interaction. In addition to the preceding rule-based models,
neural network models that build on long short-term memory (LSTM) [1, 9, 31] have recently
become an alternative choice of modeling pedestrian motion. Although the application of neural
network models is more about motion prediction than simulation, essentially both rule-based
models and neural network models share the same feature of addressing pedestrian trajectory.

Now, with vehicle considered, the effect of a vehicle should be somehow incorporated into the
pure pedestrian motion models. Some works proposed the modeling of vehicle influence on indi-
vidual pedestrians [7, 8, 29]. They did not specifically consider multi-pedestrian interaction with
vehicles (i.e., the effect of surrounding pedestrians was usually neglected), and the scenarios were
usually restricted to crosswalks. The general vehicle-pedestrian interaction is more complicated
than the interaction in restricted scenarios. The social force model is one of the options that can
easily incorporate the effect of a vehicle. This is because in the social force model, a pedestrian is
regarded as a point mass agent, and dynamics of the agent are subject to a summation of individual
effects from different sources (e.g., attraction to the destination, repulsion to surrounding pedes-
trians). The effect of a vehicle can be designed as an additional source into the summation, which
is straightforward and effective. Therefore, this work developed multi-pedestrian interaction with
a vehicle based on the social force model.

The social force model has been continually improved and modified since its introduction in
Helbing and Molnar [12]. The original model only considered the repulsion and attraction of sur-
rounding pedestrians, as well as the attraction of the destination. Later on, collision force was
added to account for extremely crowded situations such as emergency evacuation or pilgrim-
age [11]. In Zanlungo et al. [34], the authors summarized and compared different specifications of
the effect of surrounding pedestrians. To more accurately describe the effect of surrounding pedes-
trians, realistic pedestrian trajectory data [17, 25] was utilized to calibrate the parameters of the
social force model. Most calibration approaches adopted the genetic algorithm (GA) [13, 14, 34],
evaluated based on the difference between the ground truth trajectories and simulated trajectories
of the social force model.

Different approaches have been attempted to add vehicle influence into the social force model.
Some works [3, 33, 35, 36] modeled the vehicle influence as an additional force added on the
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pedestrian dynamics. The additional force not only considered the relative positions and veloc-
ities of the vehicle, as in the effect of surrounding pedestrians, but also other vehicle features such
as size, shape, and restriction on motion were considered. To address the complexity introduced
by vehicle influence, multi-layer models that contain social force were proposed [3, 15, 24, 26,
28, 35]. Social force was embedded into a layer usually referred to as behavioral layer. Above the
behavioral layer, there is another layer mainly responsible for finding a global route or interme-
diate destinations that can guide the pedestrian motion. The social force of the behavioral layer
is only responsible for adjusting local motion. For example, in Schönauer et al. [28], the proposed
model consists of three different layers that are primarily responsible for scene context effect, lo-
cal motion of the agents, and road conflicts, respectively. Vehicle influence does not only exist in
the layer of social force but also part of the influence is described in other layers in combination
with specific approaches, such as conflict resolving via the “shadow” method in Anvari et al. [3],
game theory in Johora and Müller [15] and Schönauer et al. [28], and long range and short range
conflicts in Pascucci et al. [24] and Rinke et al. [26].

This work, however, applies a single-layer social force model. Instead of accounting for the
complexity introduced by the interaction of different types of road users, the proposed model
focuses on the effect of the vehicle itself inside the social force model. Moreover, the model aims
to describe fundamental interaction scenarios of multi-pedestrian interaction with a vehicle, and
hence the model does not consider any scene information, which is the main reason and the basis
for applying multi-layer models.

The proposed social force model mathematically describes the pedestrian motion that is primar-
ily affected by multiple surrounding pedestrians and a low-speed vehicle. The model introduced a
general vehicle-pedestrian interaction design that was validated by fundamental interaction sce-
narios of multiple pedestrians coming from different directions and interacting with the vehicle
(front, back, and lateral interaction). Our main contributions are summarized as follows:

• We summarized and analyzed fundamental elements (decaying functions, anisotropies) that
were frequently and repeatedly used in the social force model.

• We modified the effect of surrounding pedestrians in the social force model based on several
existing works.

• The effect of the vehicle was newly designed so that it had a similar format of the effect of
surrounding pedestrians. The effect considered the size, shape, and longitudinal velocity of
the vehicle.

• We introduced variable constraints on the limits of pedestrian velocity and acceleration that
are dependent on the magnitude of vehicle influence and the density of nearby pedestrians.

• We applied the genetic algorithm (GA) to calibrate the proposed model. The calibration
was accomplished based on pedestrian trajectory data of a high frame rate (30 frames per
second). The calibrated model was validated based on the reproduction of fundamental in-
teraction scenarios in simulation.

2 PROBLEM FORMULATION

The fundamental problem is to design a social force based mathematical model that describes
pedestrian motion in mixed traffic scenarios, primarily considering the effect of surrounding
pedestrians and vehicles. The model should be able to generate future motion of the ego pedes-
trian based on the immediate status of the pedestrian. In other words, given the current states of
all interacting agents (positions and velocities of all surrounding pedestrians and vehicles), the
associated model should output the next step’s position and velocity of the ego pedestrian. With
each individual pedestrian assigned with a model, trajectories of all pedestrians can be generated
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by iteratively applying the models. The generated trajectories are also referred to as the predicted
motion of the pedestrians.

Since multi-pedestrian interaction with a low-speed vehicle is primarily considered in this work,
the interaction scenarios are defined such that there are at least five pedestrians and the vehicle
speed should be less than 4 m/s. The pedestrian number and the vehicle speed were empirically
determined, which may vary in other circumstances. Multiple pedestrians are also referred to as
crowd in this work. The low-speed vehicle applies in most shared space scenarios, in which pedes-
trians and vehicles are mixed together to share the right of the road/space and the vehicle usually
pays more attention to the pedestrians. The space layout is assumed to be empty, hence no scene
information. This configuration releases the vehicle from being restricted in lanes so that a variety
of vehicle maneuvers are available.

Mathematically, if we define, at time t , the state (position and velocity) of pedestrian i at as
�x i

t = (x i
t ,y

i
t ,v

i
x,t ,v

i
y,t )T , the state (position, speed, and orientation) of vehicle as �xv

t , the model can
be expressed as follows:

�x i
t+1 = fi

(
�x i

t , {�x
j�i
t }, �xv

t

)
. (1)

This work does not focus on the generation of vehicle motion, and hence the vehicle state {xv
t ,∀t }

is assumed to be known all the time. It is either directly obtained from the trajectory dataset or
intentionally synthesized. When intentionally synthesized, a kinematic bicycle model with a pure
pursuit steering controller and a PID speed controller is applied to generate more realistic vehicle
motion.

3 PEDESTRIAN MOTION MODELING

3.1 Fundamental Functions

Some fundamental functions are described in this section, because they serve as essential compo-
nents in the proposed social force pedestrian motion model. They are anisotropy functions and
decaying functions. Anisotropy functions are used to describe the different effect of the interact-
ing agents from different directions. For example, a pedestrian right in front of the ego pedestrian
obviously has bigger influence than a pedestrian on the left or right side of the ego pedestrian.
Decaying functions are used to describe the different effect of different interaction distances. For
example, a vehicle that is very far away from the ego pedestrian has merely no influence, whereas
a vehicle that is very close to the ego pedestrian surely has large influence. Both types of func-
tions have different specifications, which are selected based on the specific requirement of each
component of the model.

3.1.1 Anisotropy Functions. Anisotropy functions take input as the angle between the ego
pedestrian’s walking direction and the direction to the target agent that is interacting with the
ego pedestrian. The output of anisotropy function is a scalar ranging from 0 to 1, representing
how the influence attenuates as the angle increases.

Three different types of anisotropies (linear, sinusoidal, and exponential) are used in this work,
as shown in Figure 1, with the following expressions:

Al in (ϕ, λ) = max

{
1 − λ · |ϕ |

π
, 0

}
, (2)

Asin (ϕ, λ) = λ + (1 − λ) · 1 + cos |ϕ |
2

, (3)

Aexp (ϕ, λ) = exp (−λ · |ϕ |) , (4)
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Fig. 1. Illustration of different anisotropies. Columns from left to right: Linear anisotropy, sinusoidal
anisotropy, and exponential anisotropy. Different parameter values generate different anisotropies.

where ϕ ∈ [−π ,π ] is a variable representing the interaction angle and λ is the parameter adjusting
the anisotropy characteristics. The major difference among these anisotropies is the rate of atten-
uation at the angles near 0. For example, as |ϕ | increases from 0 to a certain angle (e.g., 90 degrees),
exponential anisotropy attenuates very fast, but sinusoidal anisotropy attenuates relatively slow
(see the second row in Figure 1). This difference plays an important role in modeling a pedestrian’s
reaction to a target agent.

3.1.2 Decaying Functions. Decaying functions take input as the distance between the ego
pedestrian to the target agent. The output is the magnitude of the influence (i.e., the force magni-
tude applied to the point mass dynamics). The magnitude decreases monotonically as the distance
increases.

Exponential function, as shown in the left of Figure 2, is a common option in most social force
models, due to its simplicity and effectiveness:

fexp (d,A,B) = A exp (−Bd ), (5)

where d is a variable representing the distance between the ego pedestrian and the target agent,
and A,B are parameters adjusting the characteristics of the decaying relationship.

Another type of decaying function, as shown in the middle of Figure 2, describes a linear rela-
tionship with smoothness modification [6] on the point where the magnitude reaches zero:

flm (d,d0,M,σ ) =
M

2d0
·
(
d0 − d +

√
(d0 − d )2 + σ

)
, (6)

where d is again a variable representing the distance, M is the force magnitude when the distance
reaches zero (physical touch happens), σ is the parameter that modifies the smoothness around
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Fig. 2. Illustration of decaying functions. Left: Exponential decaying with different parameter values. Middle:
Linear function with smoothing with different parameter values while α is fixed. Right: Linear function with
smoothing with different parameter values while M and d0 are fixed.

zero magnitude, and d0 is a threshold distance where the magnitude almost reaches zero (equals
zero if σ = 0).

The exponential function is effective in most situations, which has been demonstrated in vari-
ous social force based models. In an exponential function, the rate of decaying is still exponential,
which is helpful in some situations. For example, in the scenario of a vehicle approaching the ego
pedestrian, when the distance from the ego pedestrian to the vehicle is very close, the exponen-
tial increase of the magnitude of the vehicle influence quickly drives the pedestrian away from
the vehicle, which is normal due to the severe consequence of potential collision. However, the
exponential relationship can be unrealistic in other situations. For example, the change of effect of
a surrounding pedestrian from 4 m to 2 m prefers a more linear relationship than an exponential
relationship.

3.2 Pedestrian Dynamics

Pedestrians are regarded as point mass agents in the social force model. The motion of an agent
is governed by Newtonian dynamics with the state of position x i ,yi and velocity vi

x ,v
i
y expressed

as follows:

ẋ i = vi
x , (7)

ẏi = vi
y , (8)

v̇i
x = ai

x =
F i

x

mi
, (9)

v̇i
y = ai

y =
F i

y

mi
, (10)

where mi is the mass of pedestrian i and �F i
t = (F i

x,t , F
i
y,t )T is the total force applied on the point

mass. The preceding dynamics are discretized by a discretization time of Δt in this work. Therefore,
a state-space vector �x i

t = (x i
t ,y

i
t ,v

i
x,t ,v

i
y,t )T at time t is updated at every timestep after calculating

the total force �F i
t = (F i

x,t , F
i
y,t )T based on the immediate interaction status.

According to the definition of social force model, the total force �F i
t is the summation of multi-

source effect:
�F i

t =
�F

i,ped
t + �F i,veh

t + �F i,des
t , (11)
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where �F
i,ped
t is the pedestrian-pedestrian interaction force (effect of surrounding pedestrians),

�F i,veh the vehicle-pedestrian interaction force (effect of vehicle), and �F i,des
t the destination force

(effect of attraction of destination), all of which are detailed in the following sections.
Although each pedestrian is viewed as a point-mass agent, a virtual radius of Ri is considered

when calculating the distance between the ego pedestrian and a target pedestrian. This allows two
pedestrians to overlap a little bit with each other, which is regarded as the effect of pushing and
squeezing. Therefore, the boundary distance between two pedestrians are defined as follows:

di j
t = |�r

i j
t | − Ri − R j , (12)

where �r i j
t := (x j

t ,y
j
t )T − (x i

t ,y
i
t )T is a vector that points from the ego pedestrian i to the target

pedestrian j.

3.3 Constraints

Limits of velocity and acceleration are imposed on pedestrian motion. There is an absolute limit
beyond which the pedestrian can never reach due to the physiological limit of human beings. In
normal conditions, pedestrians do not reach the limit unless something emergent happens (e.g., a
vehicle is approaching in a dangerous way). Pedestrians also tend to restrict the velocities and ac-
celerations within a certain range to walk comfortably in free flow or to adapt particular situations
(e.g., when the pedestrian density increases, the pedestrian naturally slows down). Therefore, the
constraints applied on both the velocity and the acceleration are time dependent. In this work, the

constraints account for the vehicle-pedestrian interaction force �F i,veh
t and the reciprocal of nearby

pedestrian density (i.e., the sparseness of nearby pedestrians S i
t ):

|�vi
t | ≤ vi

l im,t

(
�F i,veh

t , S i
t

)
, (13)

|�ai
t | ≤ ai

l im,t

(
�F i,veh

t , S i
t

)
, (14)

where

S i
t := min

{ di j
t

Al in (ϕi j
t , λ

S )

}
,∀j ∈ OS

t . (15)

ϕi j
t := ϕ<�v i

t ,�ni j >
is the angle between the ego pedestrian’s walking direction and the direction to

the target agent, pedestrian j. λS is the anisotropy parameter. OS
t defines a fan area centered at

the ego pedestrian’s walking direction with a radius of thresholdT S and a field of view ϕS , which
are illustrated in Figure 3(a). The sparseness value of a pedestrian depends on the relative position
of the target, as illustrated in Figure 3(b).

In this work, six parameters are defined to model the limits of the velocity and the acceleration.
Specifically, they are maximum velocity limitvmax = 2.5 m/s, normal velocity limitvnor = 1.7 m/s,
dense velocity limit vden = 0.3 m/s, maximum acceleration limit amax = 5 m/s2, normal accelera-
tion limit anor = 2.5 m/s2, and dense acceleration limit aden = 0.68 m/s2. These values were deter-
mined according to the statistical findings in existing studies [4, 18, 19, 21]. Both vi

l im,t
and ai

l im,t

are designed such that when the sparseness is small, pedestrians are restricted to small velocity
and acceleration, but when the vehicle influence is large, the limits increase based on a certain
sparseness level. The limits never exceed the maximum values vmax and amax . The relationships
are expressed as follows:

vi
l im,t

(
�F i,veh , S i

t

)
=min

(
βS

v ·max
(
S i

t − S0
v , 0
)
,vnor −vden

)
+vden

+min
(
βF

v ·max
(
|�F i,veh | − F 0

v , 0
)
,vmax −vnor

)
, (16)
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Fig. 3. Sparseness and the corresponding fan area. The sparseness is plotted based on the calibrated param-
eters shown later in Table 2.

Fig. 4. The constraints on the acceleration and velocity, which are plotted based on the calibrated parameters
shown later in Table 2.

ai
l im,t

(
�F i,veh , S i

t

)
=min

(
βS

a ·max
(
S i

t − S0
a , 0
)
,anor − aden

)
+ aden

+min
(
βF

a ·max
(
|�F i,veh | − F 0

a , 0
)
,amax − anor

)
, (17)

where βS
v , S

0
v , β

F
v , F

0
v , β

S
a , S

0
a , β

F
a , and F 0

a are parameters that adjust the characteristics of the rela-
tionship. Figure 4 provides an example of the constraints on the velocity and the acceleration.

3.4 Pedestrian-Pedestrian Interaction

The pedestrian-pedestrian interaction force accounts for all surrounding pedestrians. Therefore,
for ego pedestrian i , the total interaction force is the summation of every individual interaction

force. An individual interaction force is further divided into physical collision force �F i j,col
t and

virtual interaction force �F i j,vir
t :

�F
i,ped
t =

∑
j ∈Q(i )

(
�F i j,col

t + �F i j,vir
t

)
, (18)

where j ∈ Q(i ) denotes the indexes of surrounding pedestrians that belong to ego pedestrian i .
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Table 1. Comparison of Different Specifications of Virtual Interaction Force

Pedestrian Info. Considered Position Abs. Velocity Rel. Velocity

Circular Specification Yes No No
Elliptical Specification Yes Yes No
Collision Avoidance Yes Yes Yes

Repulsion & Navigation Yes Yes Yes

3.4.1 Physical Collision Force. Physical collision force is effective only when the distance be-
tween two pedestrians is very close or the physical collision happens. This force allows the ego
pedestrian to push the target pedestrian, especially in emergent situations such as a vehicle ap-
proaching in a dangerous manner. It also describes extremely crowded situations as studied in
Helbing et al. [11]. The collision force is expressed as follows:

�F i j,col
t = −αcol ·min

{
di j

t , 0
}
· �ni j

t , (19)

where �ni j
t is the unit vector pointing from ego pedestrian i to target pedestrian j, and αcol is the

parameter. The collision force is effective when the boundary distance di j
t is negative.

3.4.2 Virtual Interaction Force. Virtual interaction force makes the ego pedestrian keep a
certain “social” distance to the target pedestrian. Existing studies have shown some reasonable
specifications of the force (circular specification [12], elliptical specification [14], collision
avoidance [34], and repulsion & navigation [6]), as summarized in Table 1. The interaction force
is formulated as a repulsion force with the magnitude and direction calculated based on the
temporal-spatial relationship between the ego and the target. The major difference among these
specifications is the amount of information (position, absolute velocity, and relative velocity)
used to calculate interaction force (Table 1). This study follows the specification of repulsion
& navigation, in which the decaying function of linear relationship with smoothing is applied
instead of the exponential relationship as applied in the first three specifications. The navigation
part of the force was re-designed by using the fundamental functions.

Therefore, the virtual interaction force used in this study can be expressed as follows:

�F i j,vir
t = �F

i j,r ep
t + �F i j,nav

t , (20)

where

�F
i j,r ep
t = −flm

(
di j

t ,d
r ep
0 ,M

r ep ,σ r ep
)
· Asin

(
ϕi j

t , λ
r ep
)
· �ni j

t , (21)

�F i j,nav
t = flm

(
di j

t ,d
nav
0 ,Mnav ,σnav

)
· Aexp

(
ϕi j

v,t , λ
nav
)
· �ni j
⊥,t . (22)

As illustrated in Figure 5, ϕi j
v,t := ϕ<�v

ji

t ,�n
i j

t > is the angle between the direction from ego pedestrian

to the target pedestrian, �ni j
t , and the direction of the relative velocity from pedestrian i to pedestrian

j (in terms of pedestrian j’s coordinate), �v ji
t = �vi

t − �v j
t . The unit vector �ni j

⊥,t is perpendicular to �ni j
t .

Here �ni j
⊥,t has two options (left or right side), depending on which side the ϕi j

v,t is.
The repulsion force purely considers the distance between the ego pedestrian and the target

pedestrian, which can be interpreted as a social rule of giving enough personal space when walking
in a crowd. The linear decaying function with smoothing is applied with the assumption that the
repulsion force is more of a linear relationship.

The navigation force is primarily designed for anticipating and avoiding potential collision. It
considers both the positions and the velocities of two interacting pedestrians. The navigation is
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Fig. 5. Illustration of navigational force. The blue circle indicates the ego pedestrian, and the red circle indi-
cates the target pedestrian. The relative velocity (in blue color) represents the relative motion from the ego
pedestrian to the target pedestrian.

Fig. 6. Vehicle’s virtual contour (blue dashed line). A surrounding pedestrian needs to find the influential
point (closest point to the virtual contour) and then calculates the vehicle-pedestrian interaction force.

dependent on the relative motion (velocity) between the two interacting pedestrians. If the relative

motion indicates that the ego pedestrian is moving toward the target pedestrian (ϕi j
v,t is around

zero), then a navigation force with the direction of �ni j
⊥,t is generated to avoid the potential colli-

sion. The magnitude is calculated based on the distance. An anisotropy is applied to reduce the

magnitude when the possibility of collision is becoming small due to a large ϕi j
v,t .

3.5 Vehicle-Pedestrian Interaction

Vehicle-pedestrian interaction is different from pedestrian-pedestrian interaction, because the col-
lision with a vehicle is strictly not allowed. For the effect of a vehicle as an additional force, existing
studies have modeled it as a larger-size pedestrian with elliptical specification [3], pure vehicle
shape repulsion [35], and potential-like functions [10, 33]. This work proposes a new design of
vehicle-pedestrian interaction force. It considers the spatial-temporal relationship (relative posi-
tions and velocities) between the ego pedestrian and the vehicle. The vehicle’s size and shape,
as well as anisotropy, are also considered. In other words, different pedestrian orientations and
velocities and different vehicle orientations of velocities create different combinations of vehicle-
pedestrian interaction.

A virtual contour of the vehicle is defined as an extension of the vehicle actual contour and the
consequence of slow motion. The virtual contour is illustrated in Figure 6. An extension length
le is added on based on original contour of the vehicle with length lr + lf and width lw . This
can be conceptualized as a minimum distance or a buffer that the ego pedestrian wants to keep
from the vehicle. d0

x is an extended length along the vehicle’s orientation, which assumes that
the pedestrian wants to keep a larger distance from the front bumper than from the rear bumper.
αx · uveh is another extended length along a vehicle’s moving direction, which is proportional to
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Fig. 7. The magnitudes of vehicle influence under different conditions. Columns from left to right: Vehicle
longitudinal speed increases (0 m/s, 1 m/s, 2 m/s, and 3 m/s). Rows from top to bottom: Pedestrian walking
direction varies (with velocity vector of [0,–1], [–1,0], [0,1], [1,0], and [–1,1] in the Euclidean coordinate).

the vehicle longitudinal speed uveh with the parameter αx . The faster the vehicle, the longer the
extension in front of the vehicle.

Once the virtual contour is available, an influential point P iv
t on the contour is determined

by finding the minimum distance div
t from the ego pedestrian to the contour. Then, the vehicle-

pedestrian interaction force is calculated by the following equation:

�F i,veh
t = fexp

(
div

t ,A
veh ,bveh

)
· Asin

(
ϕiv

t , λ
veh
)
· �nvi

t . (23)

The direction of the vehicle-pedestrian interaction force is determined by �nvi
t , which is a unit

vector pointing from the influential point to the ego pedestrian. The magnitude applies an expo-
nentially decaying function with parametersAveh and bveh , because as mentioned in the previous
section, the pedestrian should be quickly driven away from the vehicle once getting close to the
virtual contour. Anisotropy is considered in which ϕiv

t := ϕ<−�nvi
t ,�v i

t >
and λveh is the parameter of

the anisotropy. The anisotropy adjusts the magnitude of the vehicle influence based on the walk-
ing direction of the pedestrian with respect to the moving direction of the vehicle. For example,
a pedestrian walking away from the vehicle should have less vehicle influence than a pedestrian
walking toward the vehicle.

Figure 7 presents heat maps that illustrate the magnitudes of vehicle-pedestrian interaction
force in different situations. It compares different combinations of longitudinal vehicle speeds and
different pedestrian walking directions. As vehicle speed increases, the influence area expands (pri-
marily in the vehicle moving direction). In addition, notice that the difference among the influence
areas when the walking direction of the pedestrian changes (different rows).
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3.6 Destination Force

Destination force assumes that each pedestrian has a desired walking speed in mind. The pedes-
trian tries to keep the desired speed as much as possible by generating the destination force:

�F i,des
t = βdes · kdes ·

(
�vi

t − �vi,d
t

)
, (24)

wherekdes is a parameter that can be viewed as feedback gain for the destination force. The desired

speed �vi,d
t is always pointing from the ego pedestrian to the destination and is updated at every

timestep:

�vi,d
t = vi

0 ·
�x i,des

t − �x i
t√

|�x i,des
t − �x i

t |2 + (σdes )2

, (25)

where the parameter vi
0 represents the desired speed and the parameter σdes reduces the magni-

tude of desired speed as the pedestrian reaches the destination [6]. βdes ∈ [0, 1] in Equation (24) is

a function of |�F i,veh
t | that adjusts the destination force when the effect of vehicle becomes large:

βdes =max

{
min

{
1

F2 − F1
·
(
|�F i,veh

t | − F2

)
, 1

}
, 0

}
. (26)

It decreases from 1 to 0 with two parameters F1, F2 as thresholds. This design allows the pedestrian
to switch from reaching the destination to avoiding the collision with vehicle, which is the case in
realistic situations.

It is necessary for the destination force to have a destination or temporal goal. In real-time
application, it is estimated based on the historical pedestrian trajectory and the scenario layout.
If the model is being evaluated based on recorded pedestrian trajectory data, the destination is
usually available or can be estimated based on the entire recorded trajectory. If the model is used
for the simulation of self-designed scenarios, the destination is usually pre-defined together with
the scenario. In this work, the latter two approaches were applied for the model calibration and
post-simulation, respectively (see Section 4 and Section 5).

3.7 Vehicle Motion

We believe that vehicles should be considered more as mechanical systems instead of point-mass
dynamics similar to pedestrians, because one major purpose of developing the proposed pedestrian
motion model is to provide more information for automated systems on vehicles. Specifically, a
common procedure (path planning, trajectory generation, and trajectory following) of automated
driving is applied. The vehicle motion is generated by a kinematic bicycle model with a pure pursuit
path tracking controller that tracks a reference path [16, 23]. The reference paths are usually pre-
defined for the simulation of self-designed scenarios. This allows us to test the performance of
the proposed pedestrian model in various vehicle-pedestrian interaction patterns. Note that in the
process of calibrating model parameters (see Section 4), ground truth vehicle trajectory is directly
applied, because the primary focus in this work is pedestrian motion.

4 PARAMETER CALIBRATION

4.1 Parameter Set

All parameters associated with the proposed model are presented in Table 2. They have been
classified into three categories:

• Constant parameters: The parameters that can be directly assigned based on statistics (e.g.,
using average pedestrian radius and mass) or ground truth (e.g., vehicle size).
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Table 2. List of Calibrated Parameters for the
Proposed Model

Parameter Calibrated Value Category

Ri 0.27 Constant
mi 80 Constant
lr 1.2 Constant
lf 1 Constant

lw 1.2 Constant

βS
v 3.9761 Ped2Ped

S0
v 0.06566917 Ped2Ped

βS
a 2.994062 Ped2Ped

S0
a 0.39941 Ped2Ped

αcol 9825.125 Ped2Ped

d
r ep
0 0.7801 Ped2Ped

Mr ep 301.028 Ped2Ped
σ r ep 0.45971243 Ped2Ped
λr ep 0.1 Ped2Ped (fixed)
dnav

0 1.5892008 Ped2Ped

Mnav 410.875 Ped2Ped
σnav 0.41745 Ped2Ped
λnav 1 Ped2Ped (fixed)

T S 3.665375 Ped2Ped

ϕS 121.39191 Ped2Ped

λS 1.87 Ped2Ped

vi
0 1.394293 Ped2Ped

σdes 1 Ped2Ped (fixed)

kdes 545.3125 Ped2Ped

βF
v 0.001577598 Veh2Ped

F 0
v 199.3611 Veh2Ped

βF
a 0.09775474 Veh2Ped

F 0
a 53.94855 Veh2Ped

le 0.2151011 Veh2Ped

d0
x 0.510985 Veh2Ped

αx 1.394358 Veh2Ped

Aveh 777.5852 Veh2Ped

bveh 2.613755 Veh2Ped

λveh 0.3119132 Veh2Ped
F1 199.7455 Veh2Ped
F2 672.6487 Veh2Ped
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Fig. 8. Scenarios. The first scenario was used for calibrating Ped2Ped parameters, and the following three
scenarios were used for calibrating Veh2Ped parameters.

• Ped2Ped parameters: The parameters responsible for pedestrian-pedestrian interaction.
• Veh2Ped parameters: The parameters responsible for vehicle-pedestrian interaction.

This study applied a two-step procedure for calibrating the parameters. First, the Ped2Ped pa-
rameters were calibrated and evaluated based on the trajectory data that does not contain vehicles.
In this step, the Veh2Ped parameters were fixed to arbitrary values, because whatever values of the
Veh2Ped parameters are set, the vehicle force is always zero. Second, keeping the obtained Ped2Ped
parameters fixed, Veh2Ped parameters were then calibrated and evaluated based on the data that
contains vehicles. The reason for applying this configuration is that if the Veh2Ped parameters
were not fixed in the process of calibrating Veh2Ped parameters, some Ped2Ped parameters might
be modified in favor of obtaining better results on the data containing vehicle influence. We argue
that the calibration cannot automatically differentiate between Ped2Ped parameters and Veh2Ped
parameters.

4.2 Scenarios

Four fundamental scenarios were used for the calibration, as shown in Figure 8. The first scenario
was used for pedestrian-pedestrian interaction. After the calibration, the model is expected to
generate collective pedestrian behaviors such as lane formation and collision avoidance. Here, only
the scenario of bidirectional pedestrian motion is used, because the pedestrian motion patterns
are similar in the scenarios that were used for vehicle-pedestrian interaction. The following three
scenarios are used for calibrating vehicle-pedestrian interaction. They are fundamental interaction
scenarios that consist of back interaction (vehicle coming behind the walking pedestrians), front
interaction (vehicle coming in front of the walking pedestrians), and lateral interaction (vehicle
coming from both sides of the walking pedestrians).

4.3 Dataset

Trajectories of pedestrians and vehicles that correspond to the scenarios in Figure 8 were col-
lected by conducting controlled experiments. The experiments were conducted at an open space
in a parking lot near the CAR-West facility at the Ohio State University, as shown in Figure 9.
Pedestrian motion, as well as vehicle motion, were recorded by a drone with a downward camera
hovering above the experiment area. To obtain trajectories, positions were extracted by computer
vision based tracking techniques, whereas velocities were reconstructed by Kalman filters. There
are 80 pedestrian trajectories in total for pedestrian-pedestrian interaction and 96 pedestrian tra-
jectories in total for the vehicle-pedestrian interaction. Details about the dataset can be found in
Yang et al. [32].

4.4 Calibration

The calibration consists of manual calibration and data-driven calibration. In the manual calibra-
tion, a set of reasonable and acceptable parameters were obtained by trial and error, which was
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Fig. 9. Illustration of the controlled experiment. Positions of both pedestrians and vehicles were extracted
from the top-view video. Velocities were reconstructed by Kalman filters.

evaluated by visually inspecting the simulation results with the obtained parameters. Using the
manually calibrated parameters as initial values, the GA was then applied to further calibrate the
parameters. The GA calibration was evaluated by the errors between the ground truth trajectories
and the simulated trajectories. Ultimately, using the updated parameters, post-simulations were
conducted to verify and validate the proposed model.

As mentioned in Section 3.6, a destination is required for the social force model. In the manual
calibration, the destinations of all pedestrians were pre-defined in the self-designed scenarios. In
the data-driven calibration, a pedestrian’s destination was estimated based on the initial position
�x i,r ec

0 and final position �x i,r ec
T

of the recorded trajectory. Specifically, for pedestrian-pedestrian
interaction, the destination was estimated individually:

�x i,des
t = �x i,r ec

0 + α r ec ·
(
�x i,r ec

T
− �x i,r ec

0

)
,∀i ∈ S, (27)

where S refers to a specific scenario, and α r ec is a positive scalar, which was set as 1.5 in the
calibration.

For vehicle-pedestrian interaction, since all pedestrians have similar motion, the destination
was estimated based on the average of all initial positions and the average of all final positions:

�x i,des
t = �xmean,r ec

0 + α r ec ·
(
�xmean,r ec

T
− �xmean,r ec

0

)
,∀i ∈ S. (28)

4.5 Genetic Algorithm

The GA [20] is a class of evolutionary algorithms that mimics natural selection. It is well suitable
for finding the (near)-optimal solutions to complex systems. The basic operators such as muta-
tion, crossover, and selection introduce randomness, hence possibly overcoming the local minima
problem.

In the GA calibration process, Equation (1) was iteratively applied for each pedestrian to obtain

simulated trajectories {�x i,sim
t },∀t ∈ {1, . . . ,T },∀i ∈ S. The pedestrian’s initial state was set as the

initial state of the recorded trajectory �x i,sim
0 := �x i,r ec

0 ,∀i ∈ S, whereas vehicle applied the whole
recorded trajectory �xv

t := �xv,r ec
t ,∀t ∈ {0, 1, . . . ,T − 1}.

The performance of a particular parameter set Θ was evaluated by a loss function comparing
the simulated trajectories to the recorded trajectories.
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4.5.1 Loss Function. A classical way of designing loss function is to maximize the likelihood of
every point on the pedestrian trajectory. The assumption is that the error between the simulated
trajectory and the recorded trajectory is Gaussian. If the log-likelihood is maximized, as presented
in Daamen and Hoogendoorn [5], it is equivalent to minimizing the mean square error:

σ 2
i (Θ) =

1

T

T∑
t=1

(
�x i,r ec

t − �x i,sim
t

)2
, (29)

where Θ stands for the parameter set. This study applied mean square error as the loss (fitness)
function of the GA.

4.5.2 Initialization. The parameters were initialized as the manually calibrated parameters in
the previous step. Lower bounds and upper bounds were added to ensure that in the process of
calibration, the parameters do not go beyond unrealistic values. For example, some parameters
representing force magnitude should always be positive. And a parameter of the field of view
obviously has an angle limit. The total number of population in the GA was set to 200, which is
sufficient for the calibration.

4.5.3 Implementation. The calibration and evaluation were conducted in MATLAB R2018b with
Simulink. The Global Optimization Toolbox is used for executing the GA. As an example of com-
putation time, a typical GA calibration with 25 generations requires approximately 12 hours on
an Intel Core i7-4790 CPU @3.60 GHz desktop computer. Simulation is done at the time interval
of Δt = 0.0334s , which is equivalent to 29.97 frames per second, the same value as the frames per
second in the trajectory dataset.

5 RESULT

5.1 Pedestrian-Pedestrian Interaction

In this step, only Ped2Ped parameters, as shown in Table 2, were calibrated. Some parameters that
were manually calibrated in the previous step were fixed during the GA calibration. Specifically,
λr ep and λnav were fixed, because we believe the associated anisotropies were good enough, and
the fixation could also reduce the uncertainty of running the GA calibration. σdes was fixed be-
cause it only reduces the desired velocity when a pedestrian is close to his or her destination, which
does not affect the pedestrian motion too much if the pedestrian has not reached the destination.

5.1.1 Calibration. The GA calibration was executed for more than 30 generations. After 20 gen-
erations, both the best fitness and the mean fitness converged. The best fitness value of 1.00468
was obtained, which means the average error of all positions in all trajectories of all pedestrians is
about 1 m. This indicates the parameters were calibrated to some extent so that the model achieved
its best performance based on the applied trajectory data. The obtained values of Ped2Ped param-
eters are presented in Table 2.

5.1.2 Validation. The validation was done by simulating pedestrians with the same initial con-
ditions as in the data used for calibration. This allows us to compare and analyze the simulated
trajectories to recorded trajectories. Figure 10 plots both types of trajectories, as well as the evo-
lution of velocities of all pedestrians from a selected pedestrian-pedestrian interaction scenario.
The blue asterisks show the initial positions of all pedestrians. The red solid lines indicate the
simulated trajectories, whereas the blue dashed lines indicate recorded ground truth trajectories.
The results of more scenarios can be found in Section A.1 of the supplementary materials. The
trajectory plotting shows that in general, pedestrians are able to navigate around each other when
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Fig. 10. Validation of a selected scenario of pedestrian-pedestrian interaction. Left: A comparison between
simulated trajectories (red solid lines) and recorded trajectories (green dashed lines). The asterisks indicate
the initial positions of each pedestrian. fms shown in the title is the average of the mean square errors
(as defined in Equation (29)) of all pedestrians. Right: The evolution of velocities of all pedestrians in this
scenario. More results can be found in Section A.1 of the supplementary materials.

Fig. 11. Simulation of four groups of pedestrians interacting from four different directions. Pedestrians in
different groups are plotted in different colors. The small black arrows indicate the walking directions and the
walking velocities (length of the arrow). Different groups were randomly initialized in different quadrants and
were assigned a destination in the diagonal position, respectively. For example, the red group was initialized
within the area of x ∈ [0, 10] and y ∈ [0, 10], and assigned a destination at [−10,−10].

there is potential conflict. The velocities demonstrate that pedestrians adjust their walking speed
(slow down or accelerate) when interacting with each other.

5.1.3 Post-Simulation. Post-simulations of pedestrians in more complex scenarios were con-
ducted to further evaluate the model based on the calibrated parameters. In particular, a scenario
was designed such that four groups of pedestrians interact with each other from four different
directions. The screenshots of the simulation are displayed in Figure 11. As the screenshots show
(see the caption for a detailed description), all pedestrians were interacting as expected, even in
the extremely dense situation. Figure 12 shows the trajectories and the evolution of velocities of all
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Fig. 12. Trajectories and velocities of four-group interaction. Left: Trajectories of all pedestrians in the sim-
ulation. Right: The evolution of velocities of all pedestrians in the simulation.

pedestrians in the simulation. The curved trajectories indicate the pedestrians navigate around to
avoid potential collision. The multiple decreases in velocities indicate the pedestrians slow down
to avoid collision.

It can be seen from the simulated pedestrian motion that each pedestrian is capable of navigating
around any potential conflict with others.

5.2 Vehicle-Pedestrian Interaction

After obtaining the Ped2Ped parameters, the Veh2Ped parameters, as shown in Table 2, were cal-
ibrated by using the data that include vehicles. This step did not change the values of Ped2Ped
parameters.

5.2.1 Calibration. The GA calibration was executed for more than 30 generations. Similarly,
after about 20 generations, both the best fitness and the mean fitness converged. The best fitness
value of 4.1918 was obtained. The obtained parameter values are shown in Table 2. The best fitness
value for Veh2Ped parameters is larger compared to the best fitness value obtained for Ped2Ped
parameters. This is because the vehicle-pedestrian interaction is much more complex than the
pedestrian-pedestrian interaction, so it is reasonable that the fitness value is larger. Complex in-
teraction may require a considerably large amount of data for calibration. But in any case, the
convergence of both mean fitness and best fitness indicates that the model achieved its best perfor-
mance based on the calibration data. Therefore, we can still conclude that the model performance
was improved to some extent.

5.2.2 Validation. The model was still calibrated by simulating pedestrians with the same initial
conditions as in the data used for calibration. Different from pedestrian-pedestrian interaction,
vehicle motion was added in the simulation by using the ground truth vehicle trajectories. Fig-
ures 13, 14, and 15 show three selected scenarios, which correspond to back interaction, front
interaction, and lateral interaction, respectively. More results can be found in Section A.2 of the
supplementary materials. According to the simulated trajectories, pedestrians are able to avoid
the vehicle from different directions. The velocities indicate that pedestrians may slow down or
accelerate to avoid a potential collision with the vehicle. There remains a certain degree of er-
ror between the simulated trajectories and recorded trajectories, which can be explained by the
following reasons:

• Different types of fundamental interactions (back, front, and lateral interactions) may need
a different parameter set, which implies that one general model may not be sufficient to
describe the vehicle-pedestrian interaction.
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Fig. 13. Validation result of a selected scenario of back interaction. Left: A comparison between simulated
trajectories (red solid lines) and recorded trajectories (green dashed lines). The cyan dash-dotted line repre-
sents the ground truth trajectory of the vehicle motion. The asterisks indicate the initial positions of each
participant. fms shown in the title is the average of the mean square errors (as defined in Equation (29)) of all
pedestrians. Right: The evolution of velocities of all pedestrians in this scenario. More results can be found
in Section A.1 of the supplementary materials.

Fig. 14. Validation result of a selected scenario of front interaction. The notation is the same as in Figure 13.

Fig. 15. Validation result of a selected scenario of lateral interaction. The notation is the same as in Figure 13.

• Our assumption of homogeneous pedestrians (every pedestrian applies the same parameter
set) limits the model performance. Even for the same pedestrian in the same situation, the
pedestrian behavior could also be affected by his or her inner thought (e.g., in a rush or not).

• The limited amount of data for calibration could also cause the error.

5.2.3 Post-Simulation. Post-simulations were conducted to further evaluate the performance of
the model. Scenarios of three types of fundamental vehicle-pedestrian interactions were designed
and simulated: back interaction, front interaction, and lateral interaction. The vehicle motion was
simulated by using a pure pursuit controller tracking a pre-defined path, as described in Section 3.7.
The simulation results are shown in Figures 16, 17, and 18, respectively. Details of the simulation
configuration can be found in the figure legends. The pedestrians in the simulation are able to
avoid the collision with the vehicle from different directions. Notice that in a relatively crowded
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Fig. 16. Simulation snapshots of back interaction. A slowing-moving (3 m/s, which is the average speed in
the dataset) vehicle (yellow box) was moving from the negative x-axis to the positive x-axis. Pedestrians (red
circles) were randomly initialized within the area of x ∈ [−9,−3] and y ∈ [−3, 3], and assigned a destination
at [20, 0]. The small black arrows indicate the walking directions and the walking velocities (length of the
arrow) of pedestrians, whereas similarly the big black arrow indicates the orientation and the velocity of the
vehicle.

Fig. 17. Simulation snapshots of front interaction. The configuration is the same as in Figure 16, except the
pedestrians were initialized within x ∈ [5, 11] and y ∈ [−3, 3], and assigned a destination at [−20, 0].

situation, as shown in Figure 18, there are a couple of instances of small overlap among pedestrians.
This is exactly what we expected because the pedestrians should be able to push others if a vehicle
is approaching in a dangerous way. Trajectories and velocities of the preceding simulation can be
found in Section A.3 of the supplementary materials, in which pedestrian behavior such as slowing
down and accelerating to avoid the vehicle can be identified.
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Fig. 18. Simulation snapshots of lateral interaction. The configuration is the same as in Figure 16, except
there were two groups of pedestrians. One group (red circles) was initialized within x ∈ [−3, 3] and y ∈ [2, 8]
with a destination at [0,−20]. The other group (blue circles) was initialized withinx ∈ [−3, 3] andy ∈ [−8,−2]
with a destination at [0, 20].

Overall, although the calibration of vehicle-pedestrian interaction did not generate a very good
fitness value, the post-simulation still validated the performance of the proposed model.

6 CONCLUSION

This study proposed a straightforward yet efficient social force based model that can describe the
pedestrian motion under vehicle influence. The proposed model was evaluated and validated by
both the simulation and calibration of fundamental vehicle-pedestrian interaction scenarios (back,
front, and side interaction).

In this work, each pedestrian is assumed to be associated with a homogeneous pedestrian mo-
tion model (same values of parameters), because we were looking for a general model that can de-
scribe general pedestrian motion under vehicle influence. The proposed model is able to describe
pedestrian motion in fundamental vehicle-pedestrian interaction scenarios, as demonstrated in
the simulation. Pedestrian-pedestrian interaction is generally good. However, a certain amount of
error exists in vehicle-pedestrian interaction, hence indicating that a homogeneous model is not
enough for describing detailed pedestrian behavior under vehicle influence.

To further improve the pedestrian motion model, there are several points to consider:

• The assumption of homogeneity could be removed, and hence the pedestrian motion model
can describe different types of interactions. For example, pedestrians could have different
radii, different action capabilities (fast or slow), and different preferences of avoiding the col-
lision. This can be achieved by individually calibrating a parameter set for each pedestrian
or clustering a certain number of features based on the individually obtained parameters.

• The utilization of mean square error for calibration may not be a perfect choice. As the
simulation timestep increases, the error accumulates. The final prediction error (the differ-
ence between the last simulated position and the last recorded position) could be considered
together with the mean square error.
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• Instead of using the whole pedestrian trajectory in the data for calibration, a fixed-time
length trajectory can be applied. This will avoid larger cumulative error in longer
trajectories.

• Different fundamental vehicle-pedestrian interaction scenarios (front, back, and lateral)
may require different designs of vehicle influence, or at least different parameter sets for
vehicle influence. That means the calibration of vehicle-pedestrian could be done separately.

The dataset used in this work also has some limitations:

• There is no much variation of the vehicle speed in the dataset. Our data has an average
vehicle speed of 3 m/s. Whether the proposed model generalizes to the influence of the
vehicle of higher speed has not been validated by the data. The dataset with different vehicle
velocities is desirable.

• Pedestrian participants in our dataset do not represent all kinds of pedestrians, since they
are primarily composed of college students. In addition, the density of the pedestrian crowd
does not vary too much.

Therefore, more datasets with a variety of vehicle-pedestrian interaction patterns are eagerly de-
sired. Fortunately, there a better dataset has been available, the DUT dataset in Yang et al. [32],
which consists of natural vehicle-pedestrian interaction on a university campus. Calibrating the
proposed model based on the new dataset will be our next step.

Regarding multi-modality, various types of road users (e.g., cyclists, animals) should be consid-
ered in the future to make the pedestrian motion model more generalizable. But still, among these
road users, vehicles should be the primary concern, as they are the most dominant and dangerous
participants in the traffic.
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A SUPPLEMENTARY MATERIALS

A.1 Validation of Pedestrian-Pedestrian Interaction

Figure 19 shows the validation results of all scenarios of pedestrian-pedestrian interaction.

Fig. 19. A comparison between simulated trajectories (red solid lines) and recorded trajectories (green
dashed lines) in pedestrian-pedestrian interaction scenarios. fms shown in the title is the average of the
mean square errors (as defined in Equation (29)) of all pedestrians in the scenario. The asterisks indicate the
initial positions of each pedestrian.

A.2 Validation of Vehicle-Pedestrian Interaction

Figure 20 shows the validation results of all scenarios of vehicle-pedestrian interaction.
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Fig. 20. A comparison between simulated trajectories (red) and recorded trajectories (black) of pedestrians
in vehicle-pedestrian interaction scenarios (i.e., scenarios that consider vehicle influence). fms is the mean
square error as defined in Equation (29). The vehicle motion uses ground truth, of which the trajectories are
indicated in dash-dotted cyan. The asterisks indicate initial positions. Rows 1-2, 3-4, and 5-6 show scenarios
of back interaction, front interaction, and lateral interaction, respectively.
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A.3 Post-Simulation of Vehicle-Pedestrian Interaction

Figures 21, 22, and 23 show the trajectories and velocities of back, front, and lateral interactions
that correspond to Figures 16, 17, and 18, respectively, in the post-simulation.

Fig. 21. Trajectories and velocities of back interaction. Left: Trajectories of pedestrians (solid lines) and the
vehicle (dashed line) in the simulation. Right: The evolution of velocities of all pedestrians in the simulation.

Fig. 22. Trajectories and velocities of front interaction. Left: Trajectories of pedestrians (solid lines) and the
vehicle (dashed line) in the simulation. Right: The evolution of velocities of all pedestrians in the simulation.

Fig. 23. Trajectories and velocities of lateral interaction. Left: Trajectories of pedestrians (solid lines) and the
vehicle (dashed line) in the simulation. Right: The evolution of velocities of all pedestrians in the simulation.
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